精英家教网 > 高中数学 > 题目详情
17.如图(1)所示,已知四边形SBCD是由直角△SAB和直角梯形ABCD拼接而成的,其中∠SAB=∠SDC=90°,且点A为线段SD的中点,AD=2DC=1,AB=SD,现将△SAB沿AB进行翻折,使得二面角S-AB-C的大小为90°,得到的图形如图(2)所示,连接SC,点E、F分别在线段SB、SC上.
(Ⅰ)证明:BD⊥AF;
(Ⅱ)若三棱锥B-AEC的体积是四棱锥S-ABCD体积的$\frac{2}{5}$,求点E到平面ABCD的距离.

分析 (Ⅰ)推导出SA⊥AD,SA⊥AB,从而SA⊥平面ABCD,进而SA⊥BD,再求出AC⊥BD,由此得到BD⊥平面SAC,从而能证明BD⊥AF.
(Ⅱ)设点E到平面ABCD的距离为h,由VB-AEC=VE-ABC,且$\frac{{V}_{E-ABC}}{{V}_{S-ABCD}}$=$\frac{2}{5}$,能求出点E到平面ABCD的距离.

解答 证明:(Ⅰ)∵四边形SBCD是由直角△SAB和直角梯形ABCD拼接而成的,其中∠SAB=∠SDC=90°,
二面角S-AB-C的大小为90°,
∴SA⊥AD,
又SA⊥AB,AB∩AD=A,∴SA⊥平面ABCD,
又BD?平面ABCD,∴SA⊥BD,
在直角梯形ABCD中,∠BAD=∠ADC=90°,
AD=2CD=1,AB=2,
∴tan∠ABD=tan∠CAD=$\frac{1}{2}$,
又∠DAC+∠BAC=90°,
∴∠ABD+∠BAC=90°,即AC⊥BD,
又AC∩SA=A,∴BD⊥平面SAC,
∵AF?平面SAC,∴BD⊥AF.
解:(Ⅱ)设点E到平面ABCD的距离为h,
∵VB-AEC=VE-ABC,且$\frac{{V}_{E-ABC}}{{V}_{S-ABCD}}$=$\frac{2}{5}$,
∴$\frac{{V}_{E-ABC}}{{V}_{S-ABCD}}$=$\frac{\frac{1}{3}{S}_{△ABC}•h}{\frac{1}{3}{S}_{梯形ABCD}•SA}$=$\frac{\frac{1}{2}×2×1×h}{\frac{\frac{5}{2}×1}{2}×1}$=$\frac{2}{5}$,
解得h=$\frac{1}{2}$,
∴点E到平面ABCD的距离为$\frac{1}{2}$.

点评 本题考查线线垂直的证明,考查点到平面的距离的求法,考查等体积法的应用,考查推理论证能力、运算求解能力、空间思维能力,考查转化化归思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知双曲线$\frac{y^2}{a^2}-\frac{x^2}{4}=1$过点(2,-1),则双曲线的离心率为(  )
A.$\sqrt{2}$B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数$f(x)=2sin({ωx+φ})+1({ω>0,|φ|<\frac{π}{2}}),f(α)=-1,f(β)=1$,若|α-β|的最小值为$\frac{3π}{4}$,且f(x)的图象关于点$({\frac{π}{4},1})$对称,则函数f(x)的单调递增区间是(  )
A.$[{-\frac{π}{2}+2kπ,π+2kπ}],k∈Z$B.$[{-\frac{π}{2}+3kπ,π+3kπ}],k∈Z$
C.$[{π+2kπ,\frac{5π}{2}+2kπ}],k∈Z$D.$[{π+3kπ,\frac{5π}{2}+3kπ}],k∈Z$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.△ABC中,角A,B,C的对边分别为a,b,c,若a=$\frac{\sqrt{6}}{2}$b,A=2B,则cosB 等于(  )
A.$\frac{\sqrt{6}}{6}$B.$\frac{\sqrt{6}}{5}$C.$\frac{\sqrt{6}}{4}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆T:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,直线l经过点P(m,0)与T相交于A、B两点.
(1)若C(0,-$\sqrt{3}$)且|PC|=2,求证:P必为Γ的焦点;
(2)设m>0,若点D在Γ上,且|PD|的最大值为3,求m的值;
(3)设O为坐标原点,若m=$\sqrt{3}$,直线l的一个法向量为$\overrightarrow{n}$=(1,k),求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若$\overrightarrow{AB}$$•\overrightarrow{AC}$=-1,|$\overrightarrow{AB}$|=2,|$\overrightarrow{AC}$|=1,则($\frac{1}{2}$$\overrightarrow{AB}$-$\overrightarrow{AC}$)•($\overrightarrow{AB}$+$\overrightarrow{AC}$)的值为(  )
A.$\frac{3}{8}$B.$\frac{3}{4}$C.$\frac{5}{4}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,在△ABC中,N、P分别是AC、BN的中点,设$\overrightarrow{BA}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow{b}$,则$\overrightarrow{AP}$=(  )
A.$\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$B.-$\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$C.-$\frac{3}{4}$$\overrightarrow{a}$-$\frac{1}{4}$$\overrightarrow{b}$D.$\frac{3}{4}$$\overrightarrow{a}$-$\frac{1}{4}$$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.i为虚数单位,若(1+i)$\overline{z}$=(1-i)2,则|z|=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知圆的方程是x2+y2=1,则经过圆上一点M($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$)的切线方程是x+y-$\sqrt{2}$=0.

查看答案和解析>>

同步练习册答案