| A. | -672 | B. | 672 | C. | -288 | D. | 288 |
分析 利用二项式展开式的通项公式Tr+1=(-1)r29-r•${∁}_{9}^{r}$${x}^{9-\frac{3r}{2}}$,令9-$\frac{3r}{2}$=0,解得r,即可得出常数项.
解答 解:Tr+1=${∁}_{9}^{r}$(2x)9-r(-$\frac{1}{\sqrt{x}}$)r=(-1)r29-r•${∁}_{9}^{r}$${x}^{9-\frac{3r}{2}}$,
令9-$\frac{3r}{2}$=0,得r=6.
∴常数项为23•${∁}_{9}^{6}$=8×${∁}_{9}^{3}$=$8×\frac{9×8×7}{3×2×1}$=672.
故选:B.
点评 本题考查了二项式定理及展开式的通项公式,考查了推理能力与计算能力,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 0.28J | B. | 0.12J | C. | 0.26J | D. | 0.32J |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若a2≥b,则a≥$\sqrt{b}$或a≤-$\sqrt{b}$ | B. | 若a2>b,则a>$\sqrt{b}$或a<-$\sqrt{b}$ | ||
| C. | 若a≥$\sqrt{b}$或a≤-$\sqrt{b}$,则a2≥b | D. | 若a>$\sqrt{b}$或a<-$\sqrt{b}$,则a2>b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,2) | B. | (2,+∞) | C. | (0,2) | D. | (-∞,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{8}$ | B. | $\frac{1}{16}$ | C. | $\frac{1}{9}$ | D. | $\frac{1}{27}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com