14£®¸ø³öÒÔÏÂÁ½¸öÀà±ÈÍÆÀí£¨ÆäÖÐQΪÓÐÀíÊý¼¯£¬RΪʵÊý¼¯£¬CΪ¸´Êý¼¯£©
¢Ù¡°Èôa£¬b¡ÊR£¬Ôòa-b£¾0⇒a£¾b¡±Àà±ÈÍÆ³ö¡°a£¬b¡ÊC£¬Ôòa-b£¾0⇒a£¾b¡±
¢Ú¡°Èôa£¬b£¬c£¬d¡ÊR£¬Ôò¸´Êýa+bi=c+di⇒a=c£¬b=d¡±Àà±ÈÍÆ³ö¡°Èôa£¬b£¬c£¬d¡ÊQ£¬Ôòa+b$\sqrt{2}=c+d\sqrt{2}$?a=c£¬b=d¡±£»
¶ÔÓÚÒÔÉÏÀà±ÈÍÆÀíµÃµ½µÄ½áÂÛÅжÏÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®ÍÆÀí¢Ù¢ÚÈ«´íB£®ÍÆÀí¢Ù¶Ô£¬ÍÆÀí¢Ú´íC£®ÍÆÀí¢Ù´í£¬ÍÆÀí¢Ú¶ÔD£®ÍÆÀí¢Ù¢ÚÈ«¶Ô

·ÖÎö ÔÚÊý¼¯µÄÀ©Õ¹¹ý³ÌÖУ¬ÓÐЩÐÔÖÊÊÇ¿ÉÒÔ´«µÝµÄ£¬µ«ÓÐЩÐÔÖʲ»ÄÜ´«µÝ£¬Òò´Ë£¬ÒªÅжÏÀà±ÈµÄ½á¹ûÊÇ·ñÕýÈ·£¬¹Ø¼üÊÇÒªÔÚеÄÊý¼¯Àï½øÐÐÂÛÖ¤£¬µ±È»ÒªÏëÖ¤Ã÷Ò»¸ö½áÂÛÊÇ´íÎóµÄ£¬Ò²¿ÉÖ±½Ó¾ÙÒ»¸ö·´Àý£¬ÒªÏëµÃµ½±¾ÌâµÄÕýÈ·´ð°¸£¬¿É¶Ô3¸ö½áÂÛÖðÒ»½øÐзÖÎö£¬²»Äѽâ´ð£®

½â´ð ½â£º¢ÙÈôa£¬b¡ÊC£¬µ±a=1+i£¬b=iʱ£¬a-b=1£¾0£¬µ«a£¬b ÊÇÁ½¸öÐéÊý£¬²»ÄܱȽϴóС£®¹Ê¢Ù´íÎó£»
¢ÚÔÚÓÐÀíÊý¼¯QÖУ¬Èôa+b$\sqrt{2}=c+d\sqrt{2}$£¬Ôò£¨a-c£©+£¨b-d£©$\sqrt{2}$=0£¬Ò׵ãºa=c£¬b=d£®¹Ê¢ÚÕýÈ·£®
¹ÊÑ¡£ºC£®

µãÆÀ Àà±ÈÍÆÀíµÄÒ»°ã²½ÖèÊÇ£º£¨1£©ÕÒ³öÁ½ÀàÊÂÎïÖ®¼äµÄÏàËÆÐÔ»òÒ»ÖÂÐÔ£»£¨2£©ÓÃÒ»ÀàÊÂÎïµÄÐÔÖÊÈ¥ÍÆ²âÁíÒ»ÀàÊÂÎïµÄÐÔÖÊ£¬µÃ³öÒ»¸öÃ÷È·µÄÃüÌ⣨²ÂÏ룩£®µ«Àà±ÈÍÆÀíµÄ½áÂÛ²»Ò»¶¨ÕýÈ·£¬»¹ÐèÒª¾­¹ýÖ¤Ã÷£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÈôÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$Âú×ã|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1£¬ÇÒ$\overrightarrow{a}$•£¨$\overrightarrow{a}$-$\overrightarrow{b}$£©=$\frac{1}{2}$£¬ÔòÏòÁ¿$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½ÇΪ£¨¡¡¡¡£©
A£®$\frac{¦Ð}{6}$B£®$\frac{¦Ð}{3}$C£®$\frac{2¦Ð}{3}$D£®$\frac{5¦Ð}{6}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®º¯Êýy=$\frac{{{x^2}+3}}{{\sqrt{{x^2}+2}}}$µÄ×îСֵÊÇ$\frac{3\sqrt{2}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èçͼ£¬Ö±ÈýÀâÖùABC-A1B1C1²àÀⳤΪ2£¬µ×Ãæ±ßAC¡¢BCµÄ³¤¾ùΪ2£¬ÇÒAC¡ÍBC£¬ÈôDΪBB1µÄÖе㣬EΪACµÄÖе㣬MΪABµÄÖе㣬NΪBCµÄÖе㣮
£¨1£©ÇóÖ¤£ºMN¡ÎÆ½ÃæA1C1D£»
£¨2£©ÇóÖ¤£ºÆ½ÃæA1C1D¡ÍÆ½ÃæBCC1B1
£¨3£©ÇóµãEµ½Æ½ÃæA1C1DµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑÖªº¯Êýf£¨x£©=lnx£¬g£¨x£©=$\frac{1}{2}{x}^{2}-1$£¬Èô·½³Ìf£¨1+x2£©-g£¨x£©=kÓÐÈý¸ö¸ù£¬ÇóÂú×ãÌõ¼þµÄʵÊýkµÄȡֵÊÇ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Ö±Ïßl£ºx-2y+5=0ºÍÔ²C£ºx2+y2+2x-4y=0Ïཻ£¬ÇóÖ±Ïßl±»Ô²CËù½ØµÃµÄÏÒABµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÇóÖ¤£º
£¨1£©|a+b|+|a-b|¡Ý2|a|£»
£¨2£©|a+b|-|a-b|¡Ü2|b|

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÔÚÒ»ÅúÃÞ»¨Öгé²âÁË60¸ùÃÞ»¨µÄÏËά³¤¶È£¬½á¹ûÈçÏ£¨µ¥Î»£ºmm£©
82202352321252932938628206
3233553573332511323329450296
11523635732652301140328238358
58255143360340302370343260303
591466026317030538034661305
17534826438362306195350265385
×÷³öÕâ¸öÑù±¾µÄƵÂÊ·Ö²¼Ö±·½Í¼£¨ÔÚ¶ÔÑù±¾Êý¾Ý·Ö×éʱ£¬¿ÉÊÔÓò»Í¬µÄ·Ö×鷽ʽ£¬È»ºó´ÓÖÐÑ¡ÔñÒ»ÖÖ½ÏΪÊʺϵķÖ×é·½·¨£©£®ÃÞ»¨µÄÏËά³¤¶ÈÊÇÃÞ»¨ÖÊÁ¿µÄÖØÒªÖ¸±ê£¬ÄãÄÜ´ÓͼÖзÖÎö³öÕâÅúÃÞ»¨µÄÖÊÁ¿×´¿öÂð£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªÔ²M£ºx2+y2-4x+4y-4=0£¬Ö±Ïßl£ºx-y-5=0
£¨1£©ÇóÔ²ÐÄMµ½Ö±ÏßlµÄ¾àÀ룻
£¨2£©ÇóÖ±Ïßl±»Ô²Ëù½ØµÃµÄÏÒ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸