精英家教网 > 高中数学 > 题目详情
3.已知圆(x-m)2+y2=4上存在两点关于直线x-y-2=0对称,若离心率为$\sqrt{2}$的双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两条渐近线与圆相交,则它们的交点构成的图形的面积为(  )
A.1B.$\sqrt{3}$C.2$\sqrt{3}$D.4

分析 由圆的对称性可得圆心在直线x-y-2=0,可得m=2,由离心率公式及a,b,c的关系,可得a=b,求得渐近线方程,代入圆的方程解得交点,由三角形的面积公式即可得到所求值.

解答 解:圆(x-m)2+y2=4上存在两点关于直线x-y-2=0对称,
可得直线x-y-2=0经过圆心(m,0),可得m=2,
由e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,a2+b2=c2,可得a=b,
即有双曲线的渐近线方程为y=±x,
将直线y=±x代入圆的方程(x-2)2+y2=4,
解得交点为(0,0),(2,-2),(2,2),
可得围成的三角形的面积为$\frac{1}{2}$×2×4=4.
故选:D.

点评 本题考查双曲线的方程和性质,主要是渐近线的方程的求法,同时考查直线和圆相交,及圆的对称性,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,在四边形ABCD中,BC=1,DC=2,四个内角A,B,C,D的度数之比为3:7:4:10.求:
(1)BD的长;
(2)AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}•{bn}满足a1=2,an-1=an(an+1-1),bn=an-1.
(I)求数列{bn}的通项公式;
(Ⅱ)求数列{$\frac{{2}^{n}}{{b}_{n}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知cos2θ=$\frac{\sqrt{2}}{4}$,则sin4θ-cos4θ的值为-$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x2|x-a|(a∈R),求f(x)在[1,2]上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合B={1},C={3},A∪B={1,2},则(  )
A.A∩B=∅B.A∩C=∅C.A∪C={1,2,3}D.A∪C={2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.等比数列{an}中,an>0,a1=256,S3=448,Tn为数列{an}的前n项乘积,则T17=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知等差数列{an}的前n项和为Sn,且a1=2,S5=30,数列{bn}的前n项和为Tn,且Tn=2n-1.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=(-1)n(anbn+lnSn),求数列{cn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某单位有840名职工,现采用系统抽样抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[61,140]的人数为4.

查看答案和解析>>

同步练习册答案