分析 an+1=$\frac{a_n}{{2+{a_n}}}$对所有正整数n都成立,且a1=1,取倒数可得:$\frac{1}{{a}_{n+1}}$=$\frac{2}{{a}_{n}}$+1,变形为:$\frac{1}{{a}_{n+1}}$+1=2$(\frac{1}{{a}_{n}}+1)$,利用等比数列的通项公式即可得出.
解答 解:∵an+1=$\frac{a_n}{{2+{a_n}}}$对所有正整数n都成立,且a1=1,
∴$\frac{1}{{a}_{n+1}}$=$\frac{2}{{a}_{n}}$+1,
变形为:$\frac{1}{{a}_{n+1}}$+1=2$(\frac{1}{{a}_{n}}+1)$,
∴数列$\{\frac{1}{{a}_{n}}+1\}$是等比数列,首项与公比都为2.
∴$\frac{1}{{a}_{n}}$+1=2n,
解得an=$\frac{1}{{2}^{n}-1}$.
故答案为:$\frac{1}{{2}^{n}-1}$.
点评 本题考查了递推关系、等比数列的通项公式、“取倒数法”,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{5}{36}$ | C. | $\frac{5}{12}$ | D. | $\frac{7}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | -3 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com