精英家教网 > 高中数学 > 题目详情
锐角△ABC的内心为I,过点A作直线BI的垂线,垂足为H,点E为内切圆I与边CA的切点.若∠C=50°,则∠IEH的度数=
 
考点:弦切角
专题:直线与圆
分析:由于⊙I切AC于点E,可得IE⊥AC,又AH⊥IH,可得A、I、H、E四点共圆,在此圆中∠IEH与∠IAH对同弧.再利用三角形内角平分线的性质和三角形的内角和定理即可得出.
解答: 解:∵⊙I切AC于点E,∴IE⊥AC,得∠AEI=90°,
又∵AH⊥IH,可得∠AHI=90°,
∴∠AEI=∠AHI=90°,
因此,A、I、H、E四点共圆,在此圆中∠IEH与∠IAH对同弧,
∴∠IEH=∠IAH.
∵锐角△ABC的内心为I,
∴AI、BI分别是∠BAC、∠ABC的平分线,
可得∠IAB=
1
2
∠BAC,∠IBA=
1
2
∠ABC,
因此,∠IAB+∠IBA=
1
2
(∠BAC+∠ABC)=
1
2
(180°-∠C)=
1
2
(180°-50°)=65°.
∵∠AIH为△ABD的外角,∴∠AIH=∠IAB+∠IBA=65°,
Rt△AIH中,∠IAH=90°-∠AIH=25°,可得∠IEH=∠IAH=25°.
故答案为:25°.
点评:本题考查了四点共圆的判定与性质、弦切角定理、三角形内角平分线的性质和三角形的内角和定理,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

两平行平面α、β相距18cm,直线l与平面α、β分别交于A、B两点,点P∈l,若PA=
1
2
PB,则点P到平面β的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某城市的交通道路如图,从城市的东南角A到城市的西北角B,不经过十字道路维修处C,最近的走法种数有
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
25
+
y2
9
=1上一点P到椭圆右焦点距离为4,则点P到椭圆左准线的距离是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过原点的直线l,如果它与双曲线
y2
3
-
x2
4
=1
相交,则直线l的斜率k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两点A(1,0),B(1,
3
),O为坐标原点,点C在第一象限,且∠AOC=
π
6
,设
OC
=2
OA
OB
,(λ∈R),则λ等于(  )
A、-1B、1C、-2D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三角形ABC中,若AC=3,BC=4,AB=5,以AB所在直线为轴,将此三角形旋转一周,求所得旋转体的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在(-∞,+∞)上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上是增函数,下面是关于f(x)的判断:
①f(x)是周期函数;
②f(x)的图象关于直线x=1对称; 
③f(x)在[0,1]上是增函数;④f(2)=f(0).
其中正确的判断是
 
(把你认为正确的判断都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动圆M和圆C1:(x+1)2+y2=36内切,并和圆C2:(x-1)2+y2=4外切,动圆圆心M的轨迹方程为
 

查看答案和解析>>

同步练习册答案