精英家教网 > 高中数学 > 题目详情
19.将一枚均匀的硬币连掷4次,计算:
(1)4次都是正面朝上的概率;
(2)至少有一次正面朝上的概率;
(3)至多有一次正面朝上的概率.

分析 由于每次出现正面的概率是$\frac{1}{2}$,故n次重复试验恰好发生k次的概率公式:fn(k)=Cnk($\frac{1}{2}$)n,分别根据条件求出即可.

解答 解:由于每次出现正面的概率是$\frac{1}{2}$,故n次重复试验恰好发生k次的概率公式:fn(k)=Cnk($\frac{1}{2}$)n
(1)4次都是正面朝上的概率为C44($\frac{1}{2}$)4=$\frac{1}{16}$,
(2)4次都是反面朝上的概率为C44($\frac{1}{2}$)4=$\frac{1}{16}$,故至少有一次正面朝上的概率1-$\frac{1}{16}$=$\frac{15}{16}$,
(3)至多有一次正面朝上的概率C41($\frac{1}{2}$)4+C40($\frac{1}{2}$)4=$\frac{5}{16}$.

点评 本题考查n次重复试验恰好发生k次的概率的运算,解题时要注意公式:fn(k)=Cnk($\frac{1}{2}$)n,k=0,1,2,…,n的灵活运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.口袋里装有红球、白球、黑球各1个,这3个球除颜色外完全相同,有放回的连续抽取2次,每次从中任意地取出1个球,则两次取出的球颜色不同的概率是(  )
A.$\frac{2}{9}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{8}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知各项均为正数的等比数列{an}中,若a5a9=3,a6a10=9,则a7a8=(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.4$\sqrt{3}$D.3$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.甲、乙两人玩游戏,规则如下:第奇数局,甲赢的概率为$\frac{3}{4}$,第偶数局,乙赢的概率为$\frac{3}{4}$,每一局没有平局,规定:当其中一人赢的局数比另一人赢的局数多2次时游戏结束,则游戏结束时,甲乙两人玩的局数的数学期望为$\frac{16}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.从2016名学生中选取50名学生参加数学竞赛,若采用下面的方法选取:先用简单随机抽样从2016人中剔除16人,剩下的2000人再按系统抽样的方法抽取50人,则在2016人每人入选的概率是(  )
A.不全相等B.均不相等
C.都相等且为$\frac{25}{1008}$D.都相等且为$\frac{1}{40}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在某项体能测试中,跑1km时间不超过4min为优秀,某同学跑1km所花费的时间X是离散型随机变量吗?如果我们只关心该同学是否能够取得优秀成绩,应该如何定义随机变量?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知三棱柱ABC-A1B1C1的所有棱长相等,若∠AA1B1=∠AA1C1=60°,则异面直线A1C与AB1所成角的余弦值是(  )
A.$\frac{\sqrt{3}}{6}$B.$\frac{\sqrt{2}}{3}$C.$\frac{\sqrt{15}}{8}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知cos(θ-$\frac{π}{4}$)=$\frac{1}{3}$,$\frac{π}{2}$<θ<π,则sin2θ=$-\frac{7}{9}$,tanθ=$-\frac{9+4\sqrt{2}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.${∫}_{0}^{1}$(3x2-$\frac{1}{2}$)dx的值是$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案