精英家教网 > 高中数学 > 题目详情
14.抛物线x2=ay(a∈R)的焦点坐标为(  )
A.($\frac{a}{2}$,0)B.($\frac{a}{4}$,0)C.(0,$\frac{a}{2}$)D.(0,$\frac{a}{4}$)

分析 利用抛物线的标准方程,即可得出结论.

解答 解:抛物线x2=ay(a∈R)的焦点坐标为(0,$\frac{a}{4}$).
故选:D.

点评 本题考查抛物线的简单性质,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知抛物线y=-2x2+x-$\frac{1}{8}$和点A($\frac{1}{4}$,$\frac{11}{8}$).过点F($\frac{1}{4}$,-$\frac{1}{8}$)任作直线,交抛物线于B,C两点.
(1)求△ABC的重心轨迹方程,并表示y=f(x)形式;
(2)若数列{xk},0<x1<$\frac{1}{2}$,满足xk+1=f(xk).求证:$\sum_{k=1}^{n}$xk+1k<$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设集合A={x|-3<x<4},集合B={x|x<log29},则A∪B等于(  )
A.(-3,log29)B.(-3,4)C.(-∞,log29)D.(-∞,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.直线y=2与函数y=tan$\frac{1}{2}$x图象相交,则相邻两焦点间的距离是2π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列结论正确的是(  )
A.当x>0且x≠1时,lgx+$\frac{1}{lgx}$≥2B.x>0时,6-x-$\frac{4}{x}$的最大值是2
C.$\frac{{x}^{2}+5}{\sqrt{{x}^{2}+4}}$的最小值是2D.当x∈(0,π)时,sinx+$\frac{4}{sinx}$≥4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.“方程$\frac{{x}^{2}}{2+n}$-$\frac{{y}^{2}}{n+1}$=1表示双曲线”是“n>-1”的(  )
A.充分不必要条件B.必要且不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知△ABC内角A,B,C的对边分别为a,b,c.
(1)若b是a与c的等比中项,求B的取值范围;
(2)若B=$\frac{π}{3}$,求sinA+sinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列不等式一定成立的是(  )
A.sinx+$\frac{1}{sinx}$≥2B.x2+4≥4|x|C.lg(x2+1)>lg(2x)D.$\frac{1}{a}$+$\frac{1}{b}$>$\frac{2}{\sqrt{ab}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知抛物线C:y2=2px(p>0)的焦点为F,准线为l,点P($\frac{1}{2}$,m)是抛物线C上一点,若点P到直线l的距离等于点P到坐标原点O的距离,则点F到准线l的距离是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案