精英家教网 > 高中数学 > 题目详情
已知∠BAC在平面α内,PA是α的斜线,若∠PAB=∠PAC=∠BAC=60°,PA=a,则点P到α的距离是
 
考点:点、线、面间的距离计算
专题:计算题,空间位置关系与距离
分析:作PO⊥α,垂足为O,作OD⊥AB,垂足为D,连接PD,则PD⊥AB,求出OA,可得PO.
解答: 解:作PO⊥α,垂足为O,作OD⊥AB,垂足为D,连接PD,则PD⊥AB,
∵∠PAB=∠PAC=∠BAC=60°,
∴PD=
1
2
a,∠OAB=30°,
∴OA=
3
3
a,
∴PO=
a2-
a2
3
=
6
3
a.
故答案为:
6
3
a.
点评:本题考查点P到α的距离,考查学生的计算能力,正确构造三角形是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的对称轴为坐标轴,左、右两个焦点分别为F1、F2,且抛物线y2=4
3
x与该椭圆有一个共同的焦点,点P在椭圆C上,且PF2⊥F1F2,|PF1|=
7
2

(1)求椭圆C的方程;
(2)设D(
3
2
,0),过F2且不垂直于坐标轴的动直线l交椭圆C于A、B两点,若以DA、DB为邻边的平行四边形为菱形,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设公差为d(d≠0)的等差数列{an}与公比为q(q>0)的等比数列{bn}有如下关系:a1=b1,a3=b3,a7=b5
(Ⅰ)比较a15与b7的大小关系,并给出证明.
(Ⅱ)是否存在正整数m,n,使得an=bm?若存在,求出m,n之间所满足的关系式;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知M(0,
3
),N(0,-
3
),平面上一动点P满足|PM|+|PN|=4,记点P的轨迹为P.
(1)求轨迹P的方程;
(2)设过点E(0,1)且不垂直于坐标轴的直线l1:y=kx+b1与轨迹P相交于A,B两点,若y轴上存在一点Q,使得直线QA,QB关于y轴对称,求出点Q的坐标;
(3)是否存在不过点E(0,1),且不垂直坐标轴的直线l,它与轨迹P及圆E:x2+(y-1)2=9从左到右依次交于C,D,F,G四点,且满足
.
ED
-
.
EC
=
.
EG
-
.
EF
?若存在,求出当△OCG的面积S取得最小值时k2的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆M:
x2
a2
+
y2
b2
=1
(a>0,b>0)的离心率为
2
2
,且经过点P(1,
2
2
).过坐标原点的直线l1与l2均不在坐标轴上,l1与椭圆M交于A,C两点,l2与椭圆M交于B,D两点.
(1)求椭圆M的方程;
(2)若平行四边形ABCD为菱形,求菱形ABCD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,双曲线的中心在坐标原点O,A,C分别是双曲线虚轴的上下顶点,B是双曲线的左顶点,F为双曲线的左焦点,直线AB与FC相交于点D.若双曲线的离心率为2,则∠BDF的余弦值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,边长为a的等边三角形ABC的中线AF与中位线DE交于点G,已知△A′DE(A′∉平面ABC)是△ADE绕DE旋转过程中的一个图形,有下列命题:
①平面A′FG⊥平面ABC;
②BC∥平面A′DE;
③三棱锥A′-DEF的体积最大值为
1
64
a3
④动点A′在平面ABC上的射影在线段AF上;
⑤二面角A′-DE-F大小的范围是[0,
π
2
].
其中正确的命题是
 
(写出所有正确命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
x2+x   (x ≥ 0)
-x2+x (x<0)
,则不等式f(x2-x+1)<12的解集是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α,β为两个平面,且α⊥β,l为直线.则l⊥β是l∥α的(  )
A、必要而不充分条件
B、充分而不必要条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

同步练习册答案