分析 仔细分析题干中给出的不等式的结论“若{an}是等差数列,且a1=0,s、t是互不相等的正整数,则(s-1)at-(t-1)as=0”的规律,结合等差数列与等比数列具有类比性,且等差数列与和差有关,等比数列与积商有关,因此等比数列类比到等差数列的$\frac{{{b}_{t}}^{s-1}}{{{b}_{s}}^{t-1}}$=1成立.
解答 解:等差数列中的bn和am可以类比等比数列中的bn和am,
等差数列中的(s-1)at可以类比等比数列中的at s-1,
等差数列中的“差”可以类比等比数列中的“商”.
等差数列中的“a1=0”可以类比等比数列中的“b1=1”.
故$\frac{{{b}_{t}}^{s-1}}{{{b}_{s}}^{t-1}}$=1.
故答案为:$\frac{{{b}_{t}}^{s-1}}{{{b}_{s}}^{t-1}}$=1.
点评 本题主要考查等差数列类比到等比数列的类比推理,类比推理一般步骤:①找出等差数列、等比数列之间的相似性或者一致性.②用等差数列的性质去推测物等比数列的性质,得出一个明确的命题(或猜想).
科目:高中数学 来源: 题型:选择题
| A. | a>b⇒$\frac{a}{b}$>1 | B. | a>b⇒am2>bm2 | ||
| C. | a3>b3,ab>0⇒$\frac{1}{a}$<$\frac{1}{b}$ | D. | a2>b2,ab>0⇒$\frac{1}{a}$<$\frac{1}{b}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 31 | B. | 122 | C. | 324 | D. | 484 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 80 m | B. | 100 m | C. | 50 m | D. | 40 m |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{7}{5}$ | B. | $\frac{7}{5}$ | C. | $\frac{1}{5}$ | D. | -$\frac{1}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0)上是增函数 | B. | (0,+∞)上是增函数 | C. | (-∞,3)上是增函数 | D. | (3,+∞)上是增函数 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com