精英家教网 > 高中数学 > 题目详情
若一条直线与一个平面成72°角,则这条直线与这个平面内经过斜足的直线所成角中最大角等于(  )
A、72°B、90°
C、108°D、180°
考点:直线与平面所成的角
专题:空间角
分析:由已知中一条直线与一个平面成72°角,根据线面夹角的性质--最小角定理,我们可以求出这条直线与这个平面内不经过斜足的直线所成角的范围,进而求出其最大值.
解答: 证明:已知AB是平面a的斜线,A是斜足,BC⊥平面a,C为垂足,
则直线AC是斜线AB在平面a内的射影.
设AD是平面a内的任一条直线,且BD⊥AD,垂足为D,
又设AB与AD所成的角∠BAD,AB与AC所成的角为∠BAC.
BC⊥平面a mBD⊥AD 由三垂线定理可得:DC⊥AC
sin∠BAD=
BD
AB
,sin∠BAC=
BC
AB

在Rt△BCD中,BD>BC,
∠BAC,∠BAD是Rt△内的一个锐角所以∠BAC<∠BAD.
从上面的证明可知最小角定理,斜线和平面所成的角是这条斜线和平面内过斜足的直线所成的一切角,其中最大的角为90°,由已知中一条直线与一个平面成72°角,这条直线和这个平面内经过斜足的直线所成角的范围是:72°≤θ≤90°
故选:B
点评:本题考查的知识要点:最小角定理的应用.线面的夹角.属于基础题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知曲线C:
x2
4
+
y2
9
=1
,直线l:
x=2+t
y=2-2t
(t为参数)
(1)写出曲线C的参数方程,直线l的普通方程;
(2)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(普通文科做)如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E、E1分别是棱AD,AA1的中点,F为AB的中点.求:
(1)点D到平面EE1C的距离;
(2)求三棱锥E1-FCC1的体积

查看答案和解析>>

科目:高中数学 来源: 题型:

设x∈R,则“x
2
3
”是“3x2+x-2>0”的(  )
A、充分不必要条件
B、必要不充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

设线段AB的两个端点A、B分别在x轴、y轴上滑动,且|AB|=4,点M是线段AB的中点,则点M的轨迹方程是(  )
A、
x2
9
+
y2
4
=1
B、x2+y2=4
C、x2-y2=4
D、
y2
25
+
x2
9
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:AO⊥平面OBC,A-BC-O的平面角为α.求证:cosα=
S△OBC
S△ABC
.并类比平面直角三角形ABC(C为斜边),cosA=
a
c
.写出你的解题反思或解题感悟.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2x,过点P(1,0)的直线交抛物线于A,B两点,若△OAB的面积为
3
2
,则直线AB的斜率k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1的左、右焦点为F1、F2,椭圆上一个动点P满足|
PF1
|+|
PF2
|=4,|
F1F2
|=2
3

(1)求椭圆的方程;
(2)是否存在过定点(0,2)的直线l与椭圆交于不同的A、B,∠AOB=
π
2
,若存在,求出直线方程;若不存在,说明理由;
(3)由(2)问中,若∠AOB为锐角,求直线的斜率范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lnx+
1
2
x-a(a∈R),若存在b∈[1,e],(e为自然对数的底数),使得f(f(b))=b,则实数a的取值范围是(  )
A、[-
1
2
,1-
e
2
]
B、[1-
e
2
,ln2-1]
C、[-
1
2
,ln2-1]
D、[-
1
2
,0]

查看答案和解析>>

同步练习册答案