精英家教网 > 高中数学 > 题目详情
1.等比数列{an}满足a3=16,a15=$\frac{1}{4}$,则a6=(  )
A.±2B.2C.4$\sqrt{2}$D.±4$\sqrt{2}$

分析 根据等比数列的通项公式,求出q的值,再求a6的值.

解答 解:等比数列{an}中,a3=16,a15=$\frac{1}{4}$,
∴$\frac{{a}_{15}}{{a}_{3}}$=q12=$\frac{\frac{1}{4}}{16}$=$\frac{1}{64}$,
∴q3=±$\frac{1}{2\sqrt{2}}$;
∴a6=a3•q3
=16×(±$\frac{1}{2\sqrt{2}}$)
=±4$\sqrt{2}$.
故答案为:D.

点评 本题考查了等比数列的通项公式的应用问题,也考查了学生灵活的计算能力,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.某校学生会进行了一次关于“消防安全”的调查活动,组织部分学生干部在几个大型小区随机抽取了50名居民进行问卷调查.活动结束后,团委会对问卷结果进行了统计,并将其中“是否知道灭火器使用方法(知道或不知道)”的调查结果统计如下表:
年龄(岁)[10,20)[20,30)[30,40)[40,50)[50,60)[60,70]
频数mn151073
知道的人数4612632
表中所调查的居民年龄在[10,20),[20,30),[30,40)的人数成等差数列.
(Ⅰ)求上表中的m,n值,若从年龄在[20,30)的居民中随机选取两人,求这两人至少有一人知道灭火器使用方法的概率;
(Ⅱ)在被调查的居民中,若从年龄在[10,20),[20,30)的居民中各随机选取2人参加消防知识讲座,记选中的4人中不知道灭火器使用方法的人数为ξ,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=lg(x2-2x+3)的定义域为(-∞,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x2-alnx-1,函数F(x)=a-1-$\frac{a}{1+\sqrt{x}}$.
(Ⅰ)如果f(x)在[3,5]上是单调递增函数,求实数a的取值范围;
(Ⅱ)当a=2,x>0且x≠1时,比较$\frac{f(x)}{x-1}$与F(x)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若复数z满足z+2=(z-2)•i,则复数z的共轭复数$\overline{z}$=(  )
A.-2iB.2iC.2+ID.2-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设a=($\frac{1}{2}$)${\;}^{\frac{1}{3}}$,b=log${\;}_{\frac{1}{3}}$2,c=log${\;}_{\frac{1}{2}}$3,则(  )
A.a>b>cB.a>c>bC.b>c>aD.c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x}-1,x≤0}\\{f(x-1)+1,x>0}\end{array}\right.$,把函数g(x)=f(x)-x的零点按从小到大的顺序排列成一个数列{an},则该数列的通项公式为(  )
A.an=$\frac{n-1}{2}$B.an=n-1C.an=(n-1)2D.an=2n-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知α,β是方程x2-x-1=0的两个根,且α<β.数列{an},{bn}满足a1=1,a2=β,an+2=an+1+an,bn=an+1-αan(n∈N*).
(1)求b2-a2的值;
(2)证明:数列{bn}是等比数列;
(3)设c1=1,c2=-1,cn+2+cn+1=cn(n∈N*),证明:当n≥3时,an=(-1)n-1(αcn-2+βcn).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设点A是半径为1的圆周上的定点,P是圆周上的动点,则$PA<\sqrt{2}$的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

同步练习册答案