精英家教网 > 高中数学 > 题目详情
如图,三棱柱ABC-A1B1C1中,∠CAA1=∠A1AB=∠BAC=90°,AB=AA1=1,AC=2.
(1)求证:A1B⊥平面AB1C;
(2)求直线B1C与平面ACC1A1所成角的正弦值.
考点:直线与平面所成的角,直线与平面垂直的判定
专题:综合题,空间位置关系与距离,空间角
分析:(1)证明A1B⊥平面AB1C,利用线面垂直的判定,证明A1B垂直于平面AB1C中两条相交直线即可;
(2)连接A1C,证明∠B1CA1是直线B1C与平面ACC1A1所成角,再求直线B1C与平面ACC1A1所成角的正弦值.
解答: (1)证明:∵∠CAA1=∠BAC=90°,
∴CA⊥AA1,CA⊥AB,
∵A1A∩AB=A,
∴CA⊥平面A1B1BA,
∵A1B?平面A1B1BA,
∴CA⊥A1B,
∵四边形A1B1BA为正方形,
∴A1B⊥AB1
∵AC∩AB1=A,
∴A1B⊥平面AB1C;
(2)解:连接A1C,则B1A1⊥AA1,B1A1⊥AC,
∵AA1∩AC=A,
∴B1A1⊥平面ACC1A1
∴∠B1CA1是直线B1C与平面ACC1A1所成角.
在矩形ACC1A1中,AA1=1,AC=2,∴A1C=
5

∵A1B1=AB=1,
∴在Rt△A1B1C中,CB1=
6

∴sin∠B1CA1=
6
6
点评:本题主要考查异面直线所成的角的定义和求法,体现了转化的数学思想,直线和平面垂直的判定定理的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

Sn是数列{an}的前n项和,an=
1
n(n+1)
,则S1=1-
1
2
,S2=1-
1
3
,S3=1-
1
4
,S4=1-
1
5
,由此可以归纳出(  )
A、Sn=1-
1
n
B、Sn=1-
1
(n-1)
C、Sn=1-
1
n+1
D、Sn=1-
1
n(n+1)

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,求曲线ρ=2cosθ关于直线θ=
π
4
(ρ∈R)对称的曲线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在四棱柱ABCD-A1B1C1D1中,AA1⊥底面ABCD,底面ABCD为菱形,O为A1C1
与B1D1交点,已知AA1=AB=1,∠BAD=60°.
(Ⅰ)求证:A1C1⊥平面B1BDD1
(Ⅱ)求证:AO∥平面BC1D;
(Ⅲ)设点M在△BC1D内(含边界),且OM⊥B1D1,说明满足条件的点M的轨迹,并求OM的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos4x-sin4x.
(1)求f(
π
4
)
的值及f(x)的最大值;
(2)求f(x)的递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)试证明柯西不等式:(a2+b2)(x2+y2)≥(ax+by)2(x,y,a,b∈R)
;(Ⅱ)已知x2+y2=2,且|x|≠|y|,求
1
(x+y)2
+
1
(x-y)2
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=|x-4|+|x-3|,
(Ⅰ)求f(x)的最小值m
(Ⅱ)当a+2b+3c=m(a,b,c∈R)时,求a2+b2+c2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知极坐标系的极点与直角坐标系中坐标原点重合,极轴与x轴正半轴重合,曲线C的极坐标方程是ρ=2
5
sinθ,点P的直角坐标为(3,
5
),直线l过点P且倾斜角为
π
4
,设直线l与曲线C交于A、B两点.
(Ⅰ)写出直线的参数方程
(Ⅱ)求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

由花盆摆成以下图案,根据摆放规律,可得第4个图形中的花盆数为
 

查看答案和解析>>

同步练习册答案