精英家教网 > 高中数学 > 题目详情
已知直线y=kx+1与曲线y=x3+ax+b切于点(1,3),则a,b的值分别为
 
考点:利用导数研究曲线上某点切线方程
专题:计算题,导数的概念及应用
分析:因为(1,3)是直线与曲线的交点,所以把(1,3)代入直线方程即可求出斜率k的值,然后利用求导法则求出曲线方程的导函数,把切点的横坐标x=1代入导函数中得到切线的斜率,让斜率等于k列出关于a的方程,求出方程的解得到a的值,然后把切点坐标和a的值代入曲线方程,即可求出b的值.
解答: 解:把(1,3)代入直线y=kx+1中,得到k=2,
求导得:y′=3x2+a,所以y′|x=1=3+a=2,解得a=-1,
把(1,3)及a=-1代入曲线方程得:1-1+b=3,
则b的值为3.
故答案为:-1和3.
点评:此题考查学生会利用导数求曲线上过某点切线方程的斜率,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

将数列{an}按如图所示的规律排成一个三角形数表,并同时满足以下两个条件:①各行的第一个数a1,a2,a5,…构成公差为d的等差数列;②从第二行起,每行各数按从左到右的顺序都构成公比为q的等比数列.若a1=1,a3=4,a5=3.
(Ⅰ)求d,q的值;
(Ⅱ)求第n行各数的和T.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果函数f(x)=ax2+bx+c(a>0)对任意的实数x,都有f(1+x)=4f(
x
2
)成立.
(1)求
b
a
c
a
的值;
(2)解关于x的不等式f(x)<4a;
(3)若f(0)=1且关于α不等式f(sinα)≤sinα+m恒成立,求实数m取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知∈R,函数f(x)=x2-2alnx.
(1)当a=1时,求f(x)的单调区间和最值;
(2)若a>0,试证明:“方程f(x)=2ax有唯一解”的充要条件是“a=
1
2
”.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=2x-
2
x
-a
的一个零点在区间(1,2)内,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在区间[-2,2]上随机取一个数x,使|x+1|-|x-1|≤1成立的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,an=
2n+1,n=2m-1
2n,n=2m
,m为正整数,前n项和为Sn,则S5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c.若a=
2
,b=2,sinB+cosB=
2
,则角C的大小为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα-cosα=-
5
4
,则sinαcosα=
 

查看答案和解析>>

同步练习册答案