精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ln(2ax+1)+ ﹣2ax(a∈R).
(1)若x=2为f(x)的极值点,求实数a的值;
(2)若y=f(x)在[3,+∞)上为增函数,求实数a的取值范围.

【答案】
(1)解: =

∵x=2为f(x)的极值点,∴f′(2)=0,即 ,解得a=0.

又当a=0时,f′(x)=x(x﹣2),可知:x=2为f(x)的极值点成立


(2)解:∵y=f(x)在[3,+∞)上为增函数,

∴f′(x)= ≥0,在[3,+∞)上恒成立.

①当a=0时,f′(x)=x(x﹣2)≥0在[3,+∞)上恒成立,∴f(x)在[3,+∞)上为增函数,故a=0符合题意.

②当a≠0时,由函数f(x)的定义域可知:必须2ax+1>0对x≥3恒成立,故只能a>0,

∴2ax2+(1﹣4a)x﹣(4a2+2)≥0在区间[3,+∞)上恒成立.

令g(x)=2ax2+(1﹣4a)x﹣(4a2+2),其对称轴为

∵a>0, ,从而g(x)≥0在区间[3,+∞)上恒成立,只要g(3)≥0即可.

由g(3)=﹣4a2+6a+1≥0,解得

∵a>0,∴

综上所述,a的取值范围为


【解析】(1)令f′(x)=0解得a,再验证是否满足取得极值的条件即可.(2)由y=f(x)在[3,+∞)上为增函数,可得f′(x)= ≥0,在[3,+∞)上恒成立.对a分类讨论即可得出.
【考点精析】关于本题考查的利用导数研究函数的单调性和函数的极值与导数,需要了解一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线经过点,且斜率为

(I)求直线的方程;

)若直线平行,且点P到直线的距离为3,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国家射击队的某队员射击一次,命中7~10环的概率如表所示:

命中环数

10环

9环

8环

7环

概率

0.32

0.28

0.18

0.12

求该射击队员射击一次 求:

(1)射中9环或10环的概率;

(2)至少命中8环的概率;(3)命中不足8环的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,BC边上的高所在直线的方程为x2y10A的平分线所在的直线方程为y0.若点B的坐标为(1,2),求点A和点C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点,动圆经过点且和直线相切,记动圆的圆心的轨迹为曲线.

(1)求曲线的方程;

(2)设曲线上一点的横坐标为,过的直线交于一点,交轴于点,过点的垂线交于另一点,若的切线,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线在第一象限内的点到焦点的距离为

(1)若,过点, 的直线与抛物线相交于另一点,求的值;

(2)若直线与抛物线相交于两点,与圆相交于两点, 为坐标原点, ,试问:是否存在实数,使得的长为定值?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】活水围网养鱼技术具有养殖密度高、经济效益好的特点.研究表明:活水围网养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数.当不超过/立方米时, 的值为千克/年;当时, 的一次函数,且当时,

)当时,求关于的函数的表达式.

)当养殖密度为多大时,每立方米的鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直三棱柱中, ,ACB=90°,M是 的中点,N是的中点.

Ⅰ)求证:MN∥平面

求点到平面BMC的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的一个顶点为抛物线的顶点 两点都在抛物线上,且.

(1)求证:直线必过一定点;

(2)求证: 面积的最小值.

查看答案和解析>>

同步练习册答案