【题目】如图,矩形
中,
,
,
是线段
上一点且满足
,
是线段
上一动点,把
沿
折起得到
,使得平面
平面
,分别记
,
与平面
所成角为
,
,平面
与平面
所成锐角为
,则:( )
![]()
![]()
A.
B.
C.
D.![]()
科目:高中数学 来源: 题型:
【题目】在中国国际大数据产业博览会期间,有甲、乙、丙、丁4名游客准备到贵州的黄果树瀑布、梵净山、万峰林三个景点旅游参观,其中的每个人只去一个景点,每个景点至少要去一个人,则游客甲去梵净山的概率为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】圆
与
轴交于
、
两点(点
在点
的左侧),
、
是分别过
、
点的圆
的切线,过此圆上的另一个点
(
点是圆上任一不与
、
重合的动点)作此圆的切线,分别交
、
于
、
两点,且
、
两直线交于点
.
(
)设切点
坐标为
,求证:切线
的方程为
.
(
)设点
坐标为
,试写出
与
的关系表达式(写出详细推理与计算过程).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某单位全体员工年龄频率分布表为:
年龄(岁) | [25,30) | [30,35) | [35,40) | [40,45) | [45,50) | [50,55) | 合计 |
人数(人) | 6 | 18 | 50 | 31 | 19 | 16 | 140 |
经统计,该单位35岁以下的青年职工中,男职工和女职工人数相等,且男职工的年龄频率分布直方图和如图所示:
![]()
(Ⅰ)求a;
(Ⅱ)求该单位男女职工的比例;
(Ⅲ)若从年龄在[25,30)岁的职工中随机抽取两人参加某项活动,求恰好抽取一名男职工和一名女职工的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设有下列四个命题:
:若
,则
;
:若
,则
;
:“
”是“
为奇函数”的充要条件;
:“等比数列
中,
”是“等比数列
是递减数列”的充要条件.
其中,真命题的是
![]()
A.
,
B.
,
C.
,
D.
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,棱长为
的正方体的顶点
在平面
内,三条棱
,
,
都在平面
的同侧. 若顶点
,
到平面
的距离分别为
,
;
![]()
(1)求平面
与平面
所成锐二面角的余弦值;
(2)求顶点
到面
的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某职业学校有2000名学生,校服务部为了解学生在校的月消费情况,随机调查了100名学生,并将统计结果绘成直方图如图所示.
![]()
(1)试估计该校学生在校月消费的平均数;
(2)根据校服务部以往的经验,每个学生在校的月消费金额
(元)和服务部可获得利润
(元),满足关系式:
根据以上抽样调查数据,将频率视为概率,回答下列问题:
(i)将校服务部从一个学生的月消费中,可获得的利润记为
,求
的分布列及数学期望.
(ii)若校服务部计划每月预留月利润的
,用于资助在校月消费低于400元的学生,估计受资助的学生每人每月可获得多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,点
分别是圆心在原点,半径为
和
的圆上的动点.动点
从初始位置
开始,按逆时针方向以角速度
作圆周运动,同时点
从初始位置
开始,按顺时针方向以角速度
作圆周运动.记
时刻,点
的纵坐标分别为
.
![]()
(Ⅰ)求
时刻,
两点间的距离;
(Ⅱ)求
关于时间
的函数关系式,并求当
时,这个函数的值域.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com