【题目】如图,矩形中,,,是线段上一点且满足,是线段上一动点,把沿折起得到,使得平面平面,分别记,与平面所成角为,,平面与平面所成锐角为,则:( )
A.B.C.D.
科目:高中数学 来源: 题型:
【题目】在中国国际大数据产业博览会期间,有甲、乙、丙、丁4名游客准备到贵州的黄果树瀑布、梵净山、万峰林三个景点旅游参观,其中的每个人只去一个景点,每个景点至少要去一个人,则游客甲去梵净山的概率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】圆与轴交于、两点(点在点的左侧),、是分别过、点的圆的切线,过此圆上的另一个点(点是圆上任一不与、重合的动点)作此圆的切线,分别交、于、两点,且、两直线交于点.
()设切点坐标为,求证:切线的方程为.
()设点坐标为,试写出与的关系表达式(写出详细推理与计算过程).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某单位全体员工年龄频率分布表为:
年龄(岁) | [25,30) | [30,35) | [35,40) | [40,45) | [45,50) | [50,55) | 合计 |
人数(人) | 6 | 18 | 50 | 31 | 19 | 16 | 140 |
经统计,该单位35岁以下的青年职工中,男职工和女职工人数相等,且男职工的年龄频率分布直方图和如图所示:
(Ⅰ)求a;
(Ⅱ)求该单位男女职工的比例;
(Ⅲ)若从年龄在[25,30)岁的职工中随机抽取两人参加某项活动,求恰好抽取一名男职工和一名女职工的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设有下列四个命题:
:若,则;
:若,则;
:“”是“为奇函数”的充要条件;
:“等比数列中,”是“等比数列是递减数列”的充要条件.
其中,真命题的是
A. ,B. ,C. ,D. ,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,棱长为的正方体的顶点在平面内,三条棱,,都在平面的同侧. 若顶点,到平面的距离分别为,;
(1)求平面与平面所成锐二面角的余弦值;
(2)求顶点到面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某职业学校有2000名学生,校服务部为了解学生在校的月消费情况,随机调查了100名学生,并将统计结果绘成直方图如图所示.
(1)试估计该校学生在校月消费的平均数;
(2)根据校服务部以往的经验,每个学生在校的月消费金额(元)和服务部可获得利润(元),满足关系式:根据以上抽样调查数据,将频率视为概率,回答下列问题:
(i)将校服务部从一个学生的月消费中,可获得的利润记为,求的分布列及数学期望.
(ii)若校服务部计划每月预留月利润的,用于资助在校月消费低于400元的学生,估计受资助的学生每人每月可获得多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,点分别是圆心在原点,半径为和的圆上的动点.动点从初始位置开始,按逆时针方向以角速度作圆周运动,同时点从初始位置开始,按顺时针方向以角速度作圆周运动.记时刻,点的纵坐标分别为.
(Ⅰ)求时刻,两点间的距离;
(Ⅱ)求关于时间的函数关系式,并求当时,这个函数的值域.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com