精英家教网 > 高中数学 > 题目详情
3.直线l:2x+y-1=0,若直线m过点(3,2)且m⊥l,则直线m的方程为x-2y+1=0.

分析 利用相互垂直的直线斜率之间的关系、点斜式即可得出.

解答 解:直线l:2x+y-1=0的斜率为-2,
则与此直线垂直的直线m的斜率k=$\frac{1}{2}$.
∴直线m的方程为y-2=$\frac{1}{2}$(x-3),化为x-2y+1=0.
故答案为x-2y+1=0.

点评 本题考查了相互垂直的直线斜率之间的关系、点斜式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知U={y|y=lnx,x>1},A={y|y=$\frac{1}{x}$,x>3},则∁UA=(  )
A.$(0,\frac{1}{3})$B.(0,+∞)C.[$\frac{1}{3},+∞$)D.(-∞,0]∪[$\frac{1}{3},+∞$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知命题p:“?x0∈R,使得x${\;}_{0}^{2}$+2ax0+1<0成立”为真命题,则实数a满足(  )
A.[-1,1)B.(-∞,-1)∪(1,+∞)C.(1,+∞)D.(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列命题中,正确的是(  )
A.对正态分布密度函数$f(x)=\frac{1}{{\sqrt{2π}σ}}{e^{-\frac{{{{(x-μ)}^2}}}{{2{σ^2}}}}},x∈R$的图象,σ越大,曲线越“高瘦”
B.若随机变量ξ的密度函数为$f(x)=\frac{1}{{2\sqrt{2π}}}{e^{-\frac{{{{(x-1)}^2}}}{8}}},x∈R$,则ξ的方差为2
C.若随机变量ξ~N(μ,σ2),则ξ落在区间(μ-3σ,μ+3σ)上的概率约为68.3%
D.若随机变量ξ~N(0,1),则P(ξ>1.2)=1-P(ξ≤1.2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设x∈R,向量$\overrightarrow a=(2,x)$,$\overrightarrow b=(3,-2)$且$\overrightarrow a⊥\overrightarrow b$,则$|{\overrightarrow a+\overrightarrow b}|$=(  )
A.5B.$\sqrt{26}$C.2$\sqrt{6}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知直线l的参数方程是$\left\{\begin{array}{l}x=4t\\ y=4t+a\end{array}\right.({t为参数})({a∈R})$,圆C的极坐标方程为ρ=4cosθ-4sinθ.
(1)将直线l的参数方程化为普通方程,以及将圆C的极坐标方程化为直角坐标方程;
(2)若圆C上有且仅有三个点到直线l的距离为$\sqrt{2}$,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.直线(a+3)x+(a-1)y-3a-1=0与圆(x-1)2+(y-1)2=9的位置关系为(  )
A.相交B.相离C.相切D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=$\frac{x^2}{x-1}$的单调递减区间是[0,1),(1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.①在[0,4]内随机取两个数a,b,则使函数f(x)=x2+ax+b2有零点的概率为$\frac{1}{4}$.
②在△ABC中,“$\overrightarrow{AB}$•$\overrightarrow{AC}$>0”是“△ABC为锐角三角形”的充要条件
③已知x>-1,y>0且满足x+2y=1,则$\frac{1}{x+1}$+$\frac{2}{y}$的最小值为$\frac{9}{2}$
④已知点P为△ABC所在平面上的一点,且$\overrightarrow{AP}$=$\frac{1}{3}$$\overrightarrow{AB}$+t$\overrightarrow{AC}$,其中t为实数,若点P落在△ABC的内部,则t的取值范围是0<t<$\frac{2}{3}$其中正确的有①③④.

查看答案和解析>>

同步练习册答案