14£®ÒÑÖªÅ×ÎïÏßE£ºy2=2px£¨p£¾0£©µÄ×¼ÏßÓëxÖá½»ÓÚµãK£¬¹ýµãK×÷Ô²C£º£¨x-2£©2+y2=1µÄÁ½ÌõÇÐÏߣ¬ÇеãΪM£¬N£¬|MN|=$\frac{4\sqrt{2}}{3}$
£¨1£©ÇóÅ×ÎïÏßEµÄ·½³Ì
£¨2£©ÉèA¡¢BÊÇÅ×ÎïÏßEÉÏ·Ö±ðλÓÚxÖáÁ½²àµÄÁ½¸ö¶¯µã£¬ÇÒ$\overrightarrow{OA}$$•\overrightarrow{OB}$=$\frac{9}{4}$£¨ÆäÖÐOÎª×ø±êÔ­µã£©
¢ÙÇóÖ¤£ºÖ±ÏßAB±Ø¹ý¶¨µã£¬²¢Çó³ö¸Ã¶¨µãQµÄ×ø±ê
¢Ú¹ýµãQ×÷ABµÄ´¹ÏßÓëÅ×ÎïÏß½»ÓÚG¡¢DÁ½µã£¬ÇóËıßÐÎAGBDÃæ»ýµÄ×îСֵ£®

·ÖÎö £¨1£©ÇóµÃKµÄ×ø±ê£¬Ô²µÄÔ²ÐĺͰ뾶£¬ÔËÓöԳÆÐԿɵÃMRµÄ³¤£¬Óɹ´¹É¶¨ÀíºÍÈñ½ÇµÄÈý½Çº¯Êý£¬¿ÉµÃCK=3£¬ÔÙÓɵ㵽ֱÏߵľàÀ빫ʽ¼´¿ÉÇóµÃp=2£¬½ø¶øµÃµ½Å×ÎïÏß·½³Ì£»
£¨2£©¢ÙÉè³öÖ±Ïß·½³Ì£¬ÁªÁ¢Å×ÎïÏß·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏòÁ¿µÄÊýÁ¿»ýµÄ×ø±ê±íʾ£¬»¯¼òÕûÀí£¬¼´¿ÉµÃµ½¶¨µãQ£»
¢ÚÔËÓÃÏÒ³¤¹«Ê½ºÍËıßÐεÄÃæ»ý¹«Ê½£¬»»ÔªÕûÀí£¬½áºÏ»ù±¾²»µÈʽ£¬¼´¿ÉÇóµÃ×îСֵ£®

½â´ð £¨1£©½â£ºÓÉÒÑÖª¿ÉµÃK£¨-$\frac{p}{2}$£¬0£©£¬Ô²C£º£¨x-2£©2+y2=1µÄÔ²ÐÄC£¨2£¬0£©£¬°ë¾¶r=1£®
ÉèMNÓëxÖá½»ÓÚR£¬ÓÉÔ²µÄ¶Ô³ÆÐԿɵÃ|MR|=$\frac{2\sqrt{2}}{3}$£¬
ÓÚÊÇ|CR|=$\sqrt{M{C}^{2}-M{R}^{2}}$=$\sqrt{1-\frac{8}{9}}$=$\frac{1}{3}$£¬
¼´ÓÐ|CK|=$\frac{|MC|}{sin¡ÏMKC}$=$\frac{|MC|}{sin¡ÏCMR}$=$\frac{1}{\frac{1}{3}}$=3£¬
¼´ÓÐ2+$\frac{p}{2}$=3£¬½âµÃp=2£¬ÔòÅ×ÎïÏßEµÄ·½³ÌΪy2=4x£»
£¨2£©¢ÙÖ¤Ã÷£ºÉèÖ±ÏßAB£ºx=my+t£¬A£¨$\frac{{{y}_{1}}^{2}}{4}$£¬y1£©£¬B£¨$\frac{{{y}_{2}}^{2}}{4}$£¬y2£©£¬
ÁªÁ¢Å×ÎïÏß·½³Ì¿ÉµÃy2-4my-4t=0£¬
y1+y2=4m£¬y1y2=-4t£¬
$\overrightarrow{OA}$$•\overrightarrow{OB}$=$\frac{9}{4}$£¬¼´ÓУ¨$\frac{{y}_{1}{y}_{2}}{4}$£©2+y1y2=$\frac{9}{4}$£¬
½âµÃy1y2=-18»ò2£¨ÉáÈ¥£©£¬
¼´-4t=-18£¬½âµÃt=$\frac{9}{2}$£®
ÔòÓÐABºã¹ý¶¨µãQ£¨$\frac{9}{2}$£¬0£©£»
¢Ú½â£ºÓɢٿɵÃ|AB|=$\sqrt{1+{m}^{2}}$|y2-y1|=$\sqrt{1+{m}^{2}}$•$\sqrt{16{m}^{2}+72}$£¬
ͬÀí|GD|=$\sqrt{1+£¨-\frac{1}{m}£©^{2}}$|y2-y1|=$\sqrt{1+\frac{1}{{m}^{2}}}$•$\sqrt{\frac{16}{{m}^{2}}+72}$£¬
ÔòËıßÐÎAGBDÃæ»ýS=$\frac{1}{2}$|AB|•|GD|=$\frac{1}{2}$$\sqrt{1+{m}^{2}}$•$\sqrt{16{m}^{2}+72}$•$\sqrt{1+\frac{1}{{m}^{2}}}$•$\sqrt{\frac{16}{{m}^{2}}+72}$
=4$\sqrt{£¨2+£¨{m}^{2}+\frac{1}{{m}^{2}}£©£©£¨85+18£¨{m}^{2}+\frac{1}{{m}^{2}}£©£©}$£¬
Áîm2+$\frac{1}{{m}^{2}}$=¦Ì£¨¦Ì¡Ý2£©£¬ÔòS=4$\sqrt{18{¦Ì}^{2}+121¦Ì+170}$ÊǹØÓڦ̵ÄÔöº¯Êý£¬
Ôòµ±¦Ì=2ʱ£¬SÈ¡µÃ×îСֵ£¬ÇÒΪ88£®
µ±ÇÒ½öµ±m=¡À1ʱ£¬ËıßÐÎAGBDÃæ»ýµÄ×îСֵΪ88£®

µãÆÀ ±¾Ì⿼²éÅ×ÎïÏߵķ½³ÌºÍÐÔÖÊ£¬Ö÷Òª¿¼²éÅ×ÎïÏß·½³ÌºÍÖ±Ïß·½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬Í¬Ê±¿¼²éÖ±ÏߺÍÔ²µÄλÖùØÏµ£¬ÏòÁ¿µÄÊýÁ¿»ýµÄ×ø±ê±íʾ£¬¾ßÓÐÒ»¶¨µÄÔËËãÁ¿£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®y=$\frac{{x}^{2}+13}{\sqrt{{x}^{2}+9}}$µÄ×îСֵΪ$\frac{13}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Èô3sin¦È=cos¦È£¬Ôòcos2¦È+sin2¦ÈµÄÖµµÈÓÚ£¨¡¡¡¡£©
A£®-$\frac{7}{5}$B£®$\frac{7}{5}$C£®-$\frac{3}{5}$D£®$\frac{3}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÈôµãMÔÚ¡÷ABCµÄ±ßABÉÏ£¬ÇÒ$\overrightarrow{AM}$=$\frac{1}{2}$$\overrightarrow{MB}$£¬Ôò$\overrightarrow{CM}$=£¨¡¡¡¡£©
A£®$\frac{1}{2}$$\overrightarrow{CA}$+$\frac{1}{2}$$\overrightarrow{CB}$B£®2$\overrightarrow{CA}$-2$\overrightarrow{CB}$C£®$\frac{1}{3}$$\overrightarrow{CA}$+$\frac{2}{3}$$\overrightarrow{CB}$D£®$\frac{2}{3}$$\overrightarrow{CA}$+$\frac{1}{3}$$\overrightarrow{CB}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®¡°-1£¼c£¼1¡±ÊÇ¡°Ö±Ïßx+y+c-0ÓëÔ²x2+y2=1Ïཻ¡±µÄ£¨¡¡¡¡£©
A£®³ä·Ö·Ç±ØÒªÌõ¼þB£®±ØÒª·Ç³ä·ÖÌõ¼þ
C£®³ä·Ö±ØÒªÌõ¼þD£®·Ç³ä·Ö·Ç±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÔÚÕýÏîµÈ±ÈÊýÁÐ{an}ÖУ¬Èôa1=1£¬ÇÒ3a3£¬a2£¬2a4³ÉµÈ²îÊýÁУ¬Ôòlog2£¨a1•a2•a3•a4•a5•a6•a7£©=£¨¡¡¡¡£©
A£®-28B£®-21C£®21D£®28

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®´Ó±àºÅΪ0£¬1£¬2£¬¡­£¬79µÄ80¼þ²úÆ·ÖУ¬²ÉÓÃϵͳ³éÑùµÄ·½·¨³éÈ¡ÈÝÁ¿ÊÇ10µÄÑù±¾£¬Èô±àºÅΪ58µÄ²úÆ·ÔÚÑù±¾ÖУ¬Ôò¸ÃÑù±¾ÖвúÆ·µÄ×î´ó±àºÅΪ74£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®¶ÔÊý²»µÈʽ£¨1+log3x£©£¨a-log3x£©£¾0µÄ½â¼¯ÊÇ$£¨{\frac{1}{3}£¬9}£©$£¬ÔòʵÊýaµÄֵΪ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®°Ñһö÷»×ÓÁ¬ÐøÅ×ÖÀÁ½´Î£¬¼ÇʼþMΪ¡°Á½´ÎËùµÃµãÊý¾ùÎªÆæÊý¡±£¬NΪ¡°ÖÁÉÙÓÐÒ»´ÎµãÊýÊÇ5¡±£¬ÔòP£¨N|M£©=£¨¡¡¡¡£©
A£®$\frac{2}{3}$B£®$\frac{5}{9}$C£®$\frac{1}{2}$D£®$\frac{1}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸