精英家教网 > 高中数学 > 题目详情
5.若3sinθ=cosθ,则cos2θ+sin2θ的值等于(  )
A.-$\frac{7}{5}$B.$\frac{7}{5}$C.-$\frac{3}{5}$D.$\frac{3}{5}$

分析 由条件利用同角三角函数的基本关系,求得所给式子的值.

解答 解:∵3sinθ=cosθ,∴tanθ=$\frac{1}{3}$,
∴cos2θ+sin2θ=$\frac{{cos}^{2}θ{-sin}^{2}θ+2sinθcosθ}{{cos}^{2}θ{+sin}^{2}θ}$=$\frac{1{-tan}^{2}θ+2tanθ}{1{+tan}^{2}θ}$=$\frac{1-\frac{1}{9}+\frac{2}{3}}{1+\frac{1}{9}}$=$\frac{7}{5}$,
故选:B.

点评 本题主要考查同角三角函数的基本关系的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.在[0,2π]上,满足sinx≥$\frac{\sqrt{3}}{2}$的x的取值范围是(  )
A.[0,$\frac{π}{3}$]B.[$\frac{π}{3}$,$\frac{5π}{3}$]C.[$\frac{π}{3}$,$\frac{2π}{3}$]D.[$\frac{5π}{6}$,π]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=2x+$\frac{1}{x}$.
(1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论;
(2)求该函数在区间[-5,-1]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在等差数列{an}中,a7=8,前7项和S7=42,则其公差是(  )
A.-$\frac{1}{3}$B.$\frac{1}{3}$C.-$\frac{2}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在三棱锥P-ABC中,△ABC与△PBC都是等边三角形,侧面PBC⊥底面ABC,AB=2$\sqrt{3}$,则该三棱锥的外接球的表面积为20π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知抛物线 y2=2px(p>0)的焦点为F,准线为 l,过点F的直线交抛物线于A,B两点,过点A作准线l的垂线,垂足为E,当A点坐标为 (3,y0)时,△AEF为正三角形,则此时△OAB的面积为(  )
A.$\frac{{4\sqrt{3}}}{3}$B.$\sqrt{3}$C.$\frac{{2\sqrt{3}}}{3}$D.$\frac{{5\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=cosx-$\sqrt{3}sinx$(x∈R).
(1)求函数f(x)在区间[0,$\frac{π}{2}$]上的值域;
(2)记△ABC内角A,B,C的对边分别为a,b,c若f(A-$\frac{π}{3}$)=1,且a=$\frac{\sqrt{3}}{2}$b,求sinB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知抛物线E:y2=2px(p>0)的准线与x轴交于点K,过点K作圆C:(x-2)2+y2=1的两条切线,切点为M,N,|MN|=$\frac{4\sqrt{2}}{3}$
(1)求抛物线E的方程
(2)设A、B是抛物线E上分别位于x轴两侧的两个动点,且$\overrightarrow{OA}$$•\overrightarrow{OB}$=$\frac{9}{4}$(其中O为坐标原点)
①求证:直线AB必过定点,并求出该定点Q的坐标
②过点Q作AB的垂线与抛物线交于G、D两点,求四边形AGBD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax3-bx2+cx+b-a(a>0,b,c∈R)
(1)设c=0
①若a=b,f(x)在x=x0处的切线过点(1,0),求x0的值;
②若a>b,求f(x)在区间[0,1]上的最大值.
(2)设f(x)在x=x1,x=x2两处取得极值,求证:f(x1)=x1,f(x2)=x2不同时成立.

查看答案和解析>>

同步练习册答案