精英家教网 > 高中数学 > 题目详情
18.等差数列{an}中,a4+a7=22.则数列{an}的前10项和等于(  )
A.220B.110C.55D.100

分析 利用等差数列的性质,之间求解数列的和即可.

解答 解:等差数列{an}中,a4+a7=22.则数列{an}的前10项和为:$\frac{10({a}_{1}+{a}_{10})}{2}$=$\frac{10×({a}_{4}+{a}_{7})}{2}$=$\frac{10×22}{2}$=110.
故选:B.

点评 本题考查数列的性质的应用,等差数列求和,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知定义在区间[-$\frac{3π}{2}$,π]上的函数y=f(x)的图象关于直线x=-$\frac{π}{4}$对称,当x∈[-$\frac{π}{4}$,π]时,函数f(x)=Asin(ωx+φ)(A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$),且其图象如图所示.
(1)求函数y=f(x)在区间[-$\frac{3π}{2}$,π]上的表达式;
(2)求满足f(x)=$\sqrt{3}$的实数x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若x>1,y>$\frac{1}{2}$,不等式$\frac{{x}^{2}}{a(2y-1)}$+$\frac{4{y}^{2}}{a(x-1)}$≥1恒成立,则实数a的最大值是(  )
A.8B.4C.2$\sqrt{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知各项均为正数的数列{an}的前n项和为Sn,且2$\sqrt{{S}_{n}}$=an+1.
(I)求数列{an}的通项公式.
(Ⅱ)设bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,数列{bn}的前n项和为Tn,若对任意n∈N*,λ>Tn都成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若等差数列中,有a1+a5=5,则2a2+3a3+a5=15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.①从甲、乙、丙3名同学中选出2名分别去参加两个乡镇的社会调查,有多少种不同的选法?
②有4张电影票,要在7人中确定4人去观看,有多少种不同的选法?
③某人射击8枪,击中4枪,且命中的4枪均为2枪连中,则不同的结果有多少种?
其中组合问题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}中,a1=1,若2an+1-an=$\frac{n-2}{n(n+1)(n+2)}$,bn=an-$\frac{1}{n(n+1)}$.
(1)求证:{bn}为等比数列,并求出{an}的通项公式;
(2)若Cn=nbn+$\frac{1}{n(n+1)}$,且其前n项和为Tn,求证:Tn<3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知三个共线向量$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$的坐标分别为$\overrightarrow{a}$=(2,-1)、$\overrightarrow{b}$=(x,2)、$\overrightarrow{c}$=(-3,y),且实数x+y的值等于-$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E,F,G分别是PA,PB,BC的中点.
(Ⅰ)求证:EF⊥平面PAD;(Ⅱ)求平面EFG与平面ABCD所成锐二面角的大小;
(Ⅲ)线段PD上是否存在一个动点M,使得直线GM与平面EFG所成角为$\frac{π}{6}$,若存在,求线段PM的长度,若不存在,说明理由.

查看答案和解析>>

同步练习册答案