精英家教网 > 高中数学 > 题目详情
10.已知在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E,F,G分别是PA,PB,BC的中点.
(Ⅰ)求证:EF⊥平面PAD;(Ⅱ)求平面EFG与平面ABCD所成锐二面角的大小;
(Ⅲ)线段PD上是否存在一个动点M,使得直线GM与平面EFG所成角为$\frac{π}{6}$,若存在,求线段PM的长度,若不存在,说明理由.

分析 (Ⅰ)根据线面垂直的判定定理即可证明EF⊥平面PAD;
(Ⅱ)建立坐标系,求出平面的法向量,利用向量法即可求平面EFG与平面ABCD所成锐二面角的大小;
(Ⅲ)求出向量坐标,利用直线和平面所成角的定义和关系进行求解即可.

解答 (Ⅰ)证明:∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,AB⊥AD
∴AB⊥平面PAD,(2分)
又∵EF∥AB∴EF⊥平面PAD,(3分)
(Ⅱ)取AD中点O,连结PO∵平面PAD⊥平面ABCD,
PO⊥AD∴PO⊥平面ABCD,(4分)
如图以O点为原点分别以OG、OD、OP所在直线为x轴y轴z轴建立空间直角坐标系:
∴O(0,0,0)A(0,-2,0)B(4,-2,0)C(4,2,0),
D(0,2,0),G(4,0,0),$P(0,0,2\sqrt{3})$,E(0,-1,$\sqrt{3}$)$F(2,-1,\sqrt{3})$$\overrightarrow{EF}=(2,0,0),\overrightarrow{EG}=(4,1,-\sqrt{3})$,
设平面EFG的法向量为$\overrightarrow m=(x,y,z)$,$\left\{{\begin{array}{l}{2x=0}\\{4x+y-\sqrt{3}z=0}\end{array}}\right.$,
∴$\overrightarrow m=(0,\sqrt{3},1)$,
(6分)
又平面ABCD的法向量为$\overrightarrow n=(0,0,1)$,(7分)
设平面EFG与平面ABCD所成锐二面角为θ∴$cosθ=\frac{{|{\overrightarrow{m•}\overrightarrow n}|}}{{|{\overrightarrow m}|•|{\overrightarrow n}|}}=\frac{1}{2}$,
∴平面EFG与平面ABCD所成锐二面角为$\frac{π}{3}$.(9分)
(Ⅲ)设$\overrightarrow{PM}=λ\overrightarrow{PD},λ∈[{0,1}]$,$\overrightarrow{GM}=\overrightarrow{GP}+\overrightarrow{PM}=\overrightarrow{GP}+λ\overrightarrow{PD}$,
∴$\overrightarrow{GM}=(-4,2λ,2\sqrt{3}(1-λ))$,(10分),
∴$sin\frac{π}{6}=|{cos\left?{\overrightarrow{GM},\overrightarrow m}\right>}|=\frac{{|{\overrightarrow{GM}•\overrightarrow m}|}}{{|{\overrightarrow{GM}}|•|{\overrightarrow m}|}}$=$\frac{{2\sqrt{3}}}{{2\sqrt{16+4{λ^2}+12{{(1-λ)}^2}}}}=\frac{1}{2}$,(12分)
即2λ2-3λ+2=0,无解,∴不存在这样的M.(13分)

点评 本题主要考查空间面面垂直的判定以及二面角和线面角的求解,建立空间坐标系,求出平面的法向量,利用向量法是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.等差数列{an}中,a4+a7=22.则数列{an}的前10项和等于(  )
A.220B.110C.55D.100

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若实数a,b满足a+b=3.求证:2a+2b≥4$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.己知函数f(x)=$\left\{\begin{array}{l}{cos\frac{π}{4}x,x≤2000}\\{x-14,x>2000}\end{array}\right.$,则f[f(2014)]=(  )
A.1B.-1C.0D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,矩形ABCD所在平面与直角梯形CDEF所在平面互相垂直,其中∠EDC=∠DEF=$\frac{π}{2}$,EF=ED=$\frac{1}{2}$CD=1,AD=$\sqrt{2}$.(1)若M为AE的中点,求证:EC∥平面BDM;
(2)求平面ADE与平面ACF所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.执行如图所示的程序框图,如果输入的变量t∈[0,3],则输出的S属于(  )
A.[0,7]B.[0,4]C.[1,7]D.[1,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.对任意非零实数a,b,若a?b的运算原理如图所示,则20.5?log0.5$\frac{1}{4}$的值为(  )
A.$\frac{{\sqrt{2}+1}}{2}$B.$\sqrt{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{2}-1}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2,左右焦点分别为F1,F2,以原点O为圆心,以椭圆C的半短轴长为半径的圆与直线3x-4y+5=0相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设不过原点的直线l:y=kx+m与椭圆C交于A,B两点.
(i)若直线AF2与BF2的斜率分别为k1,k2,且k1+k2=0,求证:直线l过定点,并求出该定点的坐标;
(ii)若直线l的斜率是直线OA,OB斜率的等比中项,求△OAB面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.二次项(2x-$\frac{1}{2x}$)6展开式中的常数项为-20.

查看答案和解析>>

同步练习册答案