精英家教网 > 高中数学 > 题目详情
15.已知|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{7}$,求:
(1)$\overrightarrow{a}$•$\overrightarrow{b}$;
(2)$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$+$\overrightarrow{b}$的夹角的余弦值.

分析 (1)根据向量的数量积公式,计算即可,
(2)根据向量的夹角公式计算即可.

解答 解:(1)由题意:${|{\overrightarrow a-\overrightarrow b}|^2}=7⇒{\overrightarrow a^2}-2\overrightarrow a•\overrightarrow b+{\overrightarrow b^2}=7$,
则${1^2}-2\overrightarrow a•\overrightarrow b+4=7⇒\overrightarrow a•\overrightarrow b=-1$,
(2)$(\overrightarrow a-\overrightarrow b)(\overrightarrow a+\overrightarrow b)={\overrightarrow a^2}-{\overrightarrow b^2}=1-4=-3$,
$|{\overrightarrow a+\overrightarrow b}|=\sqrt{{{\overrightarrow a}^2}+2\overrightarrow a•\overrightarrow b+{{\overrightarrow b}^2}}=\sqrt{1+(-2)+4}=\sqrt{3}$,
设$\overrightarrow a-\overrightarrow b$与$\overrightarrow a+\overrightarrow b$的夹角为α,则$cosα=\frac{(\overrightarrow a-\overrightarrow b)(\overrightarrow a+\overrightarrow b)}{{|{\overrightarrow a-\overrightarrow b}|•|{\overrightarrow a+\overrightarrow b}|}}=\frac{-3}{{\sqrt{7}•\sqrt{3}}}=-\frac{{\sqrt{21}}}{7}$.

点评 本题考查了向量的数量积和向量的夹角公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图,在单位正方体A1B1C1D1-ABCD中,E,F,G分别是AD,BC1,A1B的中点.
(1)求证:EF∥平面C1CDD1
(2)求证:EG⊥平面A1BC1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列每组表示同一集合的是(  )
A.M={2,3},S={(2,3)}
B.M={π},S={3.14}
C.M={0},S=∅
D.M={1,2,3,…,n-1,n},S={前n个非零自然数}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数y=f(x)+2x是偶函数,g(x)=f(x)+x2,g(1)=3,则g(-1)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设椭圆的两个焦点分别为F1,F2,过F2作椭圆长轴的垂线交椭圆于P点,若△F1PF2为等腰三角形,离心率是(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{2}-1}}{2}$C.2-$\sqrt{2}$D.$\sqrt{2}-1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=lnx+$\frac{1-x}{ax}$,其中a为大于零的常数.
(1)若f(x)在区间[1,+∞)内单调递增,求a的取值范围;
(2)求f(x)在区间[1,2]上的最大值;
(3)求证:对于任意的n∈N*,且n>1时,都有n-lnn<1+$\frac{1}{2}$+$\frac{2}{3}$+$\frac{3}{4}$+…+$\frac{n-1}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知a>0,b>0,且4a-b≥2,则$\frac{1}{a}-\frac{1}{b}$的最大值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,角A,B,C的对边分别为a,b,c,且2cos2$\frac{A-B}{2}$cosB-sin(A-B)sinB+cos(A+C)=-$\frac{3}{5}$,a=4$\sqrt{2}$,b=5,则向量$\overrightarrow{BA}$在$\overrightarrow{BC}$方向上的投影为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$-\frac{{\sqrt{2}}}{2}$C.$\frac{3}{5}$D.$-\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知an为(1+x)n+2的展开式中含xn项的系数,则数列{$\frac{1}{{a}_{n}}$}的前n项和为(  )
A.$\frac{(n+1)(n+2)}{2}$B.$\frac{n(n+1)}{2}$C.$\frac{n}{n+1}$D.$\frac{n}{n+2}$

查看答案和解析>>

同步练习册答案