精英家教网 > 高中数学 > 题目详情
18.观察下列不等式:
$\begin{array}{l}\frac{1}{5}<\frac{1}{4},\\ \frac{1}{5}+\frac{1}{13}<\frac{1}{3}\\ \frac{1}{5}+\frac{1}{13}+\frac{1}{25}<\frac{3}{8}\\ \frac{1}{5}+\frac{1}{13}+\frac{1}{25}+\frac{1}{41}<\frac{2}{5}\\…\end{array}$
则第n个不等式为$\frac{1}{5}+\frac{1}{13}+…+\frac{1}{2{n}^{2}+2n+1}$<$\frac{n}{2n+2}$.

分析 设左边的分母为数列{an},则an=2n2+2n+1,右边分子为1,分母组成以4为首项,2为公差的等差数列,满足2n+2,即可得出第n个不等式.

解答 解:设左边的分母为数列{an},则an=2n2+2n+1,右边分子为1,分母组成以4为首项,2为公差的等差数列,满足2n+2,
∴第n个不等式为$\frac{1}{5}+\frac{1}{13}+…+\frac{1}{2{n}^{2}+2n+1}$<$\frac{n}{2n+2}$,
故答案为$\frac{1}{5}+\frac{1}{13}+…+\frac{1}{2{n}^{2}+2n+1}$<$\frac{n}{2n+2}$,

点评 本题考查归纳推理,注意已知表达式的特征是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知点A(0,2)和抛物线C:y2=6x,求过点A且与抛物线C只有一个交点的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,E是直角梯形ABCD底边AB的中点,AB=2DC=2BC,将△ADE沿DE折起形成四棱锥A-BCDE.
(1)求证:DE⊥平面ABE;
(2)若二面角A-DE-B为60°,求二面角A-DC-B的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知实数x∈[0,8],随机输入x,执行如图所示的程序框图,则输出的x不小于47的概率为$\frac{3}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在四棱锥P-ABCD中,底面ABCD是以∠A=60°的菱形,PD⊥底面ABCD,且PD=CD,点M,N分别为棱AD,PC的中点证明:
(1)DN∥平面PMB;
(2)MB⊥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知向量$\overrightarrow a=(2,-1,3),\overrightarrow b=(-4,2,x)$,若$\overrightarrow a⊥\overrightarrow b$,则x的等于(  )
A.2B.-2C.$\frac{10}{3}$D.-$\frac{10}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在空间四边形ABCD的边AB、BC、CD、DA上分别取E、F、G、H四点,如果EF与HG交于点M,那么(  )
A.M一定在直线AC上B.M一定在直线CD上
C.M可能在AC上,也可能在BD上D.M不在AC上,也不在BD上

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知$f(x)=\left\{\begin{array}{l}{x^2}+4x,(x≥0)\\ 4x-{x^2},(x<0)\end{array}\right.$,若f(2-a)>f(4+3a),则实数a的取值范围为(-∞,-$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在底面为菱形的四棱锥P-ABCD中,PA⊥平面ABCD,E为PD的中点,AB=2,∠ABC=$\frac{π}{3}$.
(1)求证:PB∥平面AEC;
(2)若三棱锥P-AEC的体积为1,求点A到平面PBC的距离.

查看答案和解析>>

同步练习册答案