精英家教网 > 高中数学 > 题目详情
6.已知实数x∈[0,8],随机输入x,执行如图所示的程序框图,则输出的x不小于47的概率为$\frac{3}{8}$.

分析 由程序框图的流程,写出前三项循环得到的结果,得到输出的值与输入的值的关系,令输出值大于等于47得到输入值的范围,利用几何概型的概率公式求出输出的x不小于47的概率.

解答 解:设实数x∈[0,8],
经过第一次循环得到x=2x+1,n=2
经过第二循环得到x=2(2x+1)+1,n=3
经过第三次循环得到x=2[2(2x+1)+1]+1,n=4此时输出x,
输出的值为8x+7,
令8x+7≥47得x≥5,
由几何概型得到输出的x不小于47的概率为P=$\frac{8-5}{8}$=$\frac{3}{8}$.
故答案为:$\frac{3}{8}$.

点评 解决程序框图中的循环结构时,一般采用先根据框图的流程写出前几次循环的结果,根据结果找规律,本题属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知m,n是两条不同的直线,α、β是两个不同的平面,若m?α,n?β,且α∥β,则下列结论一定正确的是(  )
A.m∥nB.m⊥nC.m、n异面D.m∥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数$f(x)=sinx+2xf'(\frac{π}{4})+1$,则${f^/}(\frac{π}{3})$=$\frac{1-2\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.等比数列{cn}满足cn+1+cn=10•4n-1,n∈N,数列{an}满足cn=${2^{a_n}}$.
(1)求数列{an}的通项公式;
(2)数列{bn}满足bn=$\frac{1}{{{a_n}•{a_{n+1}}}}$,求数列{bn}的前n项和Tn
(3)是否存在正整数m,n(1<m<n),使得T1,Tm,Tn成等比数列?若存在,求出所有m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设集合A={x|-2≤x≤5}
(1)设U=R,若B={x|x≤-2或x>3},求A∩B,∁U(A∪B)
(2)若B={x|m+1≤x≤2m-1},且A∪B=A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若一个圆锥的侧面展开图是一个半径为3cm,圆心角为60°的扇形,则该圆锥的体积为$\frac{\sqrt{35}}{24}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.观察下列不等式:
$\begin{array}{l}\frac{1}{5}<\frac{1}{4},\\ \frac{1}{5}+\frac{1}{13}<\frac{1}{3}\\ \frac{1}{5}+\frac{1}{13}+\frac{1}{25}<\frac{3}{8}\\ \frac{1}{5}+\frac{1}{13}+\frac{1}{25}+\frac{1}{41}<\frac{2}{5}\\…\end{array}$
则第n个不等式为$\frac{1}{5}+\frac{1}{13}+…+\frac{1}{2{n}^{2}+2n+1}$<$\frac{n}{2n+2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=a|logax|(a>1)的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知z1=1+i,z2=(m-1)+(n-2)i,且z1=z2,则m+n=5.

查看答案和解析>>

同步练习册答案