精英家教网 > 高中数学 > 题目详情
3.已知向量$\overrightarrow a=(2,-1,3),\overrightarrow b=(-4,2,x)$,若$\overrightarrow a⊥\overrightarrow b$,则x的等于(  )
A.2B.-2C.$\frac{10}{3}$D.-$\frac{10}{3}$

分析 利用空间向量的数量积求解即可.

解答 解:向量$\overrightarrow a=(2,-1,3),\overrightarrow b=(-4,2,x)$,若$\overrightarrow a⊥\overrightarrow b$,
可得-8-2+3k=0,解得k=$\frac{10}{3}$.
故选:C.

点评 本题考查空间向量数量积的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.四边形ABCD是正方形,PB⊥平面ABCD,MA∥PB,PB=AB=2MA.
(1)求直线BD与平面PCD所成的角;
(2)求平面PMD与平面ABCD所成角的大小的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.等比数列{cn}满足cn+1+cn=10•4n-1,n∈N,数列{an}满足cn=${2^{a_n}}$.
(1)求数列{an}的通项公式;
(2)数列{bn}满足bn=$\frac{1}{{{a_n}•{a_{n+1}}}}$,求数列{bn}的前n项和Tn
(3)是否存在正整数m,n(1<m<n),使得T1,Tm,Tn成等比数列?若存在,求出所有m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若一个圆锥的侧面展开图是一个半径为3cm,圆心角为60°的扇形,则该圆锥的体积为$\frac{\sqrt{35}}{24}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.观察下列不等式:
$\begin{array}{l}\frac{1}{5}<\frac{1}{4},\\ \frac{1}{5}+\frac{1}{13}<\frac{1}{3}\\ \frac{1}{5}+\frac{1}{13}+\frac{1}{25}<\frac{3}{8}\\ \frac{1}{5}+\frac{1}{13}+\frac{1}{25}+\frac{1}{41}<\frac{2}{5}\\…\end{array}$
则第n个不等式为$\frac{1}{5}+\frac{1}{13}+…+\frac{1}{2{n}^{2}+2n+1}$<$\frac{n}{2n+2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知A(0,2,3),B(-2,1,6),C(1,-1,5),求方向向量为$\overrightarrow j=(0,0,1)$的直线与平面ABC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=a|logax|(a>1)的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的两焦点坐标为$({-\sqrt{2},0}),({\sqrt{2},0})$,且过点$({\sqrt{2},1})$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点P$(1,\frac{{\sqrt{2}}}{2})$作直线交椭圆于A,C两点.直线OP交椭圆于B,D两点.若P为AC中点,
①求直线AC的方程;
②求四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知点P(x0,y0)是抛物线y=3x2上一点,且y′|${\;}_{x={x}_{0}}$=6,则点P的坐标为(  )
A.(1,3)B.(-1,3)C.(3,1)D.(-3,-1)

查看答案和解析>>

同步练习册答案