精英家教网 > 高中数学 > 题目详情
7.已知$f(x)=\left\{\begin{array}{l}{x^2}+4x,(x≥0)\\ 4x-{x^2},(x<0)\end{array}\right.$,若f(2-a)>f(4+3a),则实数a的取值范围为(-∞,-$\frac{1}{2}$).

分析 先根据二次函数的解析式分别研究分段函数在各自区间上的单调性,从而得到函数f(x)的单调性,由此性质转化求解不等式,解出参数范围即可.

解答 解:函数f(x),当x≥0 时,f(x)=x2+4x,由二次函数的性质知,它在[0,+∞)上是增函数,
当x<0时,f(x)=4x-x2,由二次函数的性质知,它在(-∞,0)上是增函数,
该函数连续,则函数f(x) 是定义在R 上的增函数
∵f(2-a)>f(4+3a),
∴2-a>4+3a
解得a<-$\frac{1}{2}$,
实数a 的取值范围是(-∞,-$\frac{1}{2}$)
故答案为:(-∞,-$\frac{1}{2}$)

点评 本题是奇偶性与单调性结合的一类最主要的题型,利用单调性将不等式f(2-a)>f(4+3a)转化为一元二次不等式,求出实数a 的取值范围,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知函数$f(x)=sinx+2xf'(\frac{π}{4})+1$,则${f^/}(\frac{π}{3})$=$\frac{1-2\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.观察下列不等式:
$\begin{array}{l}\frac{1}{5}<\frac{1}{4},\\ \frac{1}{5}+\frac{1}{13}<\frac{1}{3}\\ \frac{1}{5}+\frac{1}{13}+\frac{1}{25}<\frac{3}{8}\\ \frac{1}{5}+\frac{1}{13}+\frac{1}{25}+\frac{1}{41}<\frac{2}{5}\\…\end{array}$
则第n个不等式为$\frac{1}{5}+\frac{1}{13}+…+\frac{1}{2{n}^{2}+2n+1}$<$\frac{n}{2n+2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=a|logax|(a>1)的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求下列函数的定义域:
(1)$f(x)=tan(\frac{x}{2}+\frac{π}{3})$
(2)$f(x)=\sqrt{2sinx-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的两焦点坐标为$({-\sqrt{2},0}),({\sqrt{2},0})$,且过点$({\sqrt{2},1})$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点P$(1,\frac{{\sqrt{2}}}{2})$作直线交椭圆于A,C两点.直线OP交椭圆于B,D两点.若P为AC中点,
①求直线AC的方程;
②求四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.从1,2,3,4,5,6,7,8,9中,随机取出3个不同整数,求它们的和为3的倍数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知z1=1+i,z2=(m-1)+(n-2)i,且z1=z2,则m+n=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求y=$\sqrt{{x}^{2}+x+1}$+$\sqrt{{x}^{2}-x+1}$的最小值.

查看答案和解析>>

同步练习册答案