精英家教网 > 高中数学 > 题目详情
3.已知f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x(x>1)}\\{f(x+2)(x≤1)}\end{array}\right.$,则f(1)=1.

分析 利用分段函数的性质直接求解.

解答 解:∵f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x(x>1)}\\{f(x+2)(x≤1)}\end{array}\right.$,
∴f(1)=f(3)=log33=1.
故答案为:1.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意分段函数的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.在直角坐标系xOy中,直线l的方程为x-y+4=0,设点Q是曲线$\frac{x^2}{3}$+y2=1上的一个动点,求它到直线l的距离的最小值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.曲线y=4x-x3在点(1,3)处的切线的倾斜角是$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=$\frac{lnx}{x}$,若a=f(3),b=f(4),c=f(5),则a,b,c的大小关系是(  )
A.a>b>cB.a>c>bC.b>a>cD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如果角θ的终边经过点(-$\frac{{\sqrt{3}}}{2}$,$\frac{1}{2}}$),则sinθ=(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知方程x2-tx+4=0(t>0)有实数根,求y=t2-4t+3的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在某市组织的一次数学竞赛中全体参赛学生的成绩近似服从正态分布N(60,100),已知成绩在90分以上(含90分)的学生有13人.
(1)求此次参加竞赛的学生总数共有多少人?
(2)若计划奖励竞赛成绩排在前228名的学生,问受奖学生的分数线是多少?
注:参考数值:P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544 P(μ-3σ<X≤μ+3σ)=0.9974.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示,已知正方形ABCD和ABEF所在的平面相交于AB,M、N分别为正方形ABCD和ABEF的中心,说出MN∥平面BCE的原因.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数y=xlnx的导数为y′=(  )
A.xB.1+lnxC.1+xlnxD.1

查看答案和解析>>

同步练习册答案