精英家教网 > 高中数学 > 题目详情
17.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是(  )
A.y=$\frac{1}{x}$B.y=|x|-1C.y=lg xD.y=($\frac{1}{2}$)|x|

分析 根据函数单调性以及奇偶性的性质判断即可.

解答 解:对于A,是奇函数,故错误;
对于B,函数是偶函数,但在(0,+∞)递增,故错误;
对于C,函数不具有奇偶性,故错误;
对于D,函数为偶函数在(0,+∞)递减;
故选:D.

点评 本题考查了函数的单调性、奇偶性问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.若函数$f(x)={log_a}({x^3}-ax)(a>0且a≠1)在区间(-\frac{1}{3},0)$内单调递增,则实数a的取值范围是(  )
A.$[\frac{2}{3},1)$B.$[\frac{1}{3},1)$C.$[\frac{1}{3},1)∪(1,3]$D.(1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ax+xlnx的图象在点A(e,f(e))处的切线斜率为3
(1)求a的值;
(2)求f(x)的单调区间;
(3)若不等式f(x)-kx+k>0对任意x∈(1,+∞)恒成立,求k的最大整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别为F1,F2,过F2作一条直线(不与x轴垂直)与椭圆交于A,B两点,如果△ABF1恰好为等腰直角三角形,该直线的斜率为(  )
A.±1B.±2C.$±\sqrt{2}$D.$±\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某公共汽车上有10位乘客,沿途5个车站,乘客下车的可能方式有(  )种.
A.510B.105C.50D.A105

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.北宋数学家沈括的主要数学成就之一为隙积术,所谓隙积,即“积之有隙”者,如累棋、层坛之类,这种长方台形状的物体垛积.设隙积共n层,上底由长为a个物体,宽为b个物体组成,以下各层的长、宽依次各增加一个物体,最下层成为长为c个物体,宽为d个物体组成,沈括给出求隙积中物体总数的公式为S=$\frac{n}{6}[{({2b+d})a+({b+2d})c}]+\frac{n}{6}({c-a})$.已知由若干个相同小球粘黏组成的几何体垛积的三视图如图所示,则该垛积中所有小球的个数为85.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.${(x-\frac{2}{{\sqrt{x}}})^n}$的二项展开式中第五项和第六项的二项式系数最大,则各项的系数和为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知l1⊥l2,直线l1的倾斜角为60°,则直线l2的倾斜角为(  )
A.60°B.120°C.30°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知数列{an}(n∈N*)满足an+1=$\left\{\begin{array}{l}{2{a}_{n},n为奇数}\\{{a}_{n}+1,n为偶数}\end{array}\right.$,设Sn是数列{an}的前n项和,若S5=-20,则a1的值为(  )
A.-$\frac{23}{9}$B.-$\frac{20}{31}$C.-6D.-2

查看答案和解析>>

同步练习册答案