精英家教网 > 高中数学 > 题目详情
已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,f(1)=-2
(1)求证:f(x)是奇函数
(2)试判断f(x)的单调性,并求f(x)在[-3,3]上的最值
(3)解不等式:f(x2-x)-f(x)≥-6.
(1)令x=y=0,则f(0)=0,
再令y=-x得f(x)+f(-x)=f(0)=0,
∴f(-x)=-f(x),
∴f(x)是奇函数;
(2)设x1<x2,则x2-x1>0,由x>0时,f(x)<0知,f(x2-x1)<0
∴f(x2)-f(x1)=f(x2)+f(-x1)=f(x2-x1)<0,
∴f(x1)>f(x2),
∴f(x)为R上的递减函数,
∴当x∈[-3,3]时,
f(x)min=f(3)=f(1+2)=f(1)+f(1+1)=f(1)+f(1)+f(1)=3f(1)=-6;
∵f(x)是奇函数,
∴f(x)max=f(-3)=-f(3)=6;
(3)∵f(x2-x)-f(x)≥-6=f(3),
∴f(x2-x)≥f(3)+f(x)=f(3+x),又f(x)为R上的递减函数,
∴x2-x≤3+x,
解得:-1≤x≤3.
∴原不等式的解集为{x|-1≤x≤3}.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某服装加工厂对外批发某种服装,生产成本为每件40元,对外批发价定为每件60元.该加工厂为了鼓励零售商大批量购买,推出优惠政策:一次购买不超过50件时,只享受批发价;一次购买超过50件时,每多购买1件,购买者所购买的所有服装可在享受批发价的基础上,每件再降低0.2元,但每件最低价不低于50元.
(1)试写出该种服装实际售价与销售数量的函数关系式;
(2)在每件实际售价高于50元时,购买者一次购买多少件,加工厂获得的利润最大?
(利润=销售总额-成本)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知二次函数f(x)=ax2+bx+c (a≠0)且满足f(-1)=0,对任意实数x,恒有f(x)-x≥0,并且当x∈(0,2)时,f(x)≤.
(1)求f(1)的值;
(2)证明:a>0,c>0;
(3)当x∈[-1,1]时,函数g(x)=f(x)-mx (x∈R)是单调函数,求证:m≤0或m≥1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数g(x)=x2-2,f(x)=
g(x)+x+4,x<g(x)
g(x)-x,x≥g(x)
,则f(x)的值域是(  )
A.[-
9
4
,0]∪(1,+∞)
B.[0,+∞)C.[-
9
4
,0]
D.[-
9
4
,0]∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知奇函数f(x)对任意x,y∈R,总有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,f(1)=-
2
3

(1)求证:f(x)是R上的减函数.
(2)求f(x)在[-3,3]上的最大值和最小值.
(3)若f(x)+f(x-3)≤-2,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设定义域为R+的函数f(x),对任意的正实数x,y,都有f(xy)=f(x)+f(y),且当x>1时有f(x)>0.
①求f(1)的值;
②判断f(x)在(0,+∞)上的单调性,并证明.
③若f(
1
a
)=-1,求满足不等式f(1-x-2x2)≤1的x的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
2x-x2(0<x≤3)
x2+6x(-2<x≤0)
-
4x
x+1
(-∞<x≤-2)

(1)作出f(x)的图象;
(2)求f(x)的值域;
(3)求f(x)<0时的x取值集合;
(4)讨论方程f(x)=b解的个数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设x,y∈R,且满足
(x-2)3+2(x-2)+sin(x-2)=-3
(y-2)3+2(y-2)+sin(y-2)=3
,则x+y=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=
log2x(x>0)
3x(x≤0)
,则f[f(
1
4
)]
的值是______.

查看答案和解析>>

同步练习册答案