精英家教网 > 高中数学 > 题目详情
5.某学校高二(3)班共有60人,其中男生40人,女生20人,来自城镇的40人中有男生25人,若任选一人是女生,则该女生来自城镇的概率是$\frac{1}{4}$.

分析 由题意知,来自城镇的40人中女生为15人,根据概率公式计算即可.

解答 解:某学校高二(3)班共有60人,其中男生40人,女生20人,来自城镇的40人中有男生25人,则女生为15人,
故若任选一人是女生,则该女生来自城镇的概率是P=$\frac{15}{60}$=$\frac{1}{4}$,
故答案为:$\frac{1}{4}$.

点评 本题考查了古典概型的概率问题,考查学生分析解决问题的能力,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.在直径AB为2的圆上有长度为1的动弦CD,则$\overrightarrow{AC}$•$\overrightarrow{BD}$的取值范围是[-$\frac{3}{2}$,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知向量$\overrightarrow a$、$\overrightarrow b$满足|$\overrightarrowa}$|=2,|$\overrightarrow b}$|=3,且|2$\overrightarrow a}$-$\overrightarrow b}$|=$\sqrt{13}$,则|2$\overrightarrow a}$+$\overrightarrow b}$|=$\sqrt{37}$向量$\overrightarrow a$在向量$\overrightarrow b$方向上的投影为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=alnx+$\frac{1}{x}$(a∈R)
(Ⅰ)当a=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)是否存在实数a,使得函数g(x)=f(x)-2x在(0,+∞)上单调递减?若存在,求出a的取值范围;若不存在,请说明理由;
(Ⅲ)当a>0时,讨论函数y=f(x)零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.李克强总理4月22日(世界读书日前一天)在厦门大学考察时,指出世界读书日虽然只有一天,但我们应该天天读书,这种好习惯会让我们终身受益.
某中学在此期间开展了一系列的读书教育活动.为了解本校学生课外阅读情况,学校随机抽取了100名学生进行调查.右侧是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图.若将日均阅读时间
不低于60分钟的学生称为“读书迷”,低于60分钟的学生称为“非读书迷”.
(Ⅰ)根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为“读书迷”与性别有关?
非读书迷读书迷总计
15
45
总计
P(K2≥k10.1000.0500.0100.001
k12.7063.8416.63510.828
(Ⅱ)将频率视为概率,现从该校大量学生中用随机抽样的方法每次抽取1人,共抽取5次,记被抽取的5人中的“读书迷”的人数为X.若每次抽取的结果是相互独立的,求X的数学期望EX和方差DX.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.数列{an}的通项公式为an=(1+$\frac{1}{n}$)n(n∈N*),求证:
(1){an}为递增数列;
(2)2≤an<3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.函数f(x)对任意的a,b∈R,都有f(a+b)=f(a)+f(b)-1,并且当x>0时f(x)>1,
(1)求证:f(x)在R上是增函数;
(2)若f(2)=3,解不等式f(3m2-m-2)<3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知一个实心球铁质的几何体的正视图,侧视图,俯视图都是半径为1的圆,将6个这样的几何体熔成一个实心正方体,则该正方体的表面积为24$\root{3}{{π}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若对任意的实数x,关于x的不等式|a-x+2|+|2a-x+1|≥|a|恒成立,则实数a的取值范围为(-∞,$\frac{1}{2}$].

查看答案和解析>>

同步练习册答案