精英家教网 > 高中数学 > 题目详情
在数列{an}中,an=(-1)n(2n+1)(n∈N+),则a1+a2+a3+…+a2012=
 
考点:数列的求和
专题:点列、递归数列与数学归纳法
分析:根据通项公式,求出a1=-1,a2=3,a3=-5,a4=7,得到a2+a1=2,a4+a3=2,继而得到规律,求出答案即可
解答: 解:∵an=(-1)n(2n+1),
∴a1=-1,a2=3,a3=-5,a4=7,
∴a2+a1=2,a4+a3=2,
∴a1+a2+a3+…+a2012=(a1+a2)+(a3+a4)+…+(a2011+a2012)=2×1006=2012,
故答案为:2012
点评:本题考查数列的前n项和的求法,关键是找到规律,属于基础题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

用篱笆围一个面积为100m2的矩形菜园,问这个矩形菜园长、宽各为多少时,所用篱笆最短?最短的篱笆是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

若O是△ABC所在平面内一点,且满足|
OB
-
OC
|=|
OB
-
OA
+
OC
-
OA
|,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,侧棱垂直底面的三棱柱ABC-A1B1C1的底面ABC位于平行四边形ACDE中,AE=2,AC=4,∠AEB=60°,点B为DE中点,连接A1E.
(1)求证:平面A1BC⊥平面A1ABB1
(2)设四棱锥A1-AEBC与四棱锥A1-B1BCC1的体积分别为V1,V2,求V1:V2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校将派A,B,C三个班参加首届中学生合唱比赛,每个参赛班级获奖与不获奖的机会是相等的.
(1)求这三个班级中只有一个获奖的概率;
(2)求这三个班级不同时获奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

先化简,再求值:
1
x+2
-
x2-4x+4
x2-x
÷(x+1-
3
x-1
),其中x满足x2+2x-4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x+a
x+b
(a、b为常数).
(1)若a=2,b=1,解不等式f(x-1)>0;
(2)当x∈[-1,2]时,f (x)的值域为[
5
4
,2],求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的焦点分别为F1、F2,以F1F2为直径的圆交双曲线于点A,若∠F1F2A=
π
6
,则双曲线的离心率为(  )
A、1+
3
B、4+2
3
C、4-
3
D、2+
3

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线y2=4x的焦点坐标为(  )
A、(2,0)
B、(1,0)
C、(0,-4)
D、(-2,0)

查看答案和解析>>

同步练习册答案