精英家教网 > 高中数学 > 题目详情
8.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的长轴长为4,左、右焦点分别为F1,F2,过F1的动直线l交C于A,B两点,若|AF2|+|BF2|的最大值为7,则b的值为1.

分析 由题意可知椭圆是焦点在x轴上的椭圆,利用椭圆定义得到|BF2|+|AF2|=8-|AB|,再由过椭圆焦点的弦中通径的长最短,可知当AB垂直于x轴时|AB|最小,|AB|=$\frac{2{b}^{2}}{a}$=b2,|BF2|+|AF2|=8-|AB|,由|BF2|+|AF2|的最大值等于7列式求b的值.

解答 解:由椭圆长轴长为4,则a=2,则0<b<2,
∵过F1的直线l交椭圆于A,B两点,∴|BF2|+|AF2|+|BF1|+|AF1|=2a+2a=4a=8
∴|BF2|+|AF2|=8-|AB|.
当AB垂直x轴时|AB|最小,|BF2|+|AF2|值最大,
此时|AB|=$\frac{2{b}^{2}}{a}$=b2,∴7=8-b2
解得b=1.
故答案为:1.

点评 本题考查了直线与圆锥曲线的关系,考查了椭圆的定义,考查椭圆焦点的弦中通径的长最短,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.函数y=lg(x2-3x+m)的定义域为R,则实数m的取值范围是($\frac{9}{4}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图是判断“实验数”的程序框图,在[30,80]内的所有整数中,“实验数”的个数是12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,角A、B、C的对边分别为a、b、c,2acosC+2ccosA=a+c.
(Ⅰ)若$\frac{sinA}{sinB}=\frac{3}{4}$,求$\frac{c}{b}$的值;
(Ⅱ)若$C=\frac{2π}{3}$,且c-a=8,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知在平面直角坐标系xOy内的四点A(1,2),B(3,4),C(-2,2),D(-3,5),则向量$\overrightarrow{AB}$在向量$\overrightarrow{CD}$方向上的投影为(  )
A.$\frac{{2\sqrt{10}}}{5}$B.$\frac{{\sqrt{10}}}{5}$C.$\sqrt{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A={x|y=log2(x-1)},集合B={x|(x+1)(x-2)≤0},则A∪B=(  )
A.[-1,+∞)B.(1,2]C.(1,+∞)D.[-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数y=f(x)的图象上存在不同两点M、N关于原点对称,则称点对[M,N]是函数y=f(x)的一对“和谐点对”(点对[M,N]与[N,M]看作同一对“和谐点对”).已知函数f(x)=$\left\{\begin{array}{l}{{x}^{3}-3x,x≤0}\\{|lnx|,x>0}\end{array}\right.$则此函数的“和谐点对”有(  )
A.0对B.1对C.2对D.4对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点分别为F1,F2,P为双曲线右支上一点(异于右顶点),△PF1F2的内切圆与x轴切于点(2,0),过F2作直线l与双曲线交于A,B两点,若使|AB|=b2的直线l恰有三条,则双曲线离心率的取值范围是(  )
A.(1,$\sqrt{2}$)B.(1,2)C.($\sqrt{2}$,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.抛掷一枚质地均匀的骰子两次,记事件A={两次的点数均为奇数},B={两次的点数之和小于7},则P(B|A)=(  )
A.$\frac{1}{3}$B.$\frac{4}{9}$C.$\frac{5}{9}$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案