【题目】函数
部分图象如图所示.
![]()
(1)求
的最小正周期及解析式;
(2)设
,求函数
在区间
上的最大值和最小值.
【答案】(1)
,
;(2)
在区间
上的最大值为
,最小值为
.
【解析】
(1)由图可知A=1,
,从而可求ω;再由图象经过点(
,1),可求得
;
(2)依题意g(x)化简整理为g(x)=
sin(2x
),再利用正弦函数的性质结合x的范围求得g(x)的最大值和最小值.
(1)由图可知:
,A=1,
∴T=π,
∴ω
2,
∴f(x)=cos(2x+
)
又∵图象经过点
,
∴1=cos(2
),
∴
2kπ,k∈Z,
∴
2kπ,k∈Z,
又∵|
|
,
∴
,
∴解析式为f(x)=cos(2x
);
(2)g(x)=f(x)+sin2x
=cos(2x
)+sin2x
=cos2xcos
sin2xsin![]()
sin2x
cos2x
=
sin(2x
);当
时,2x
,
当2x
时,即x=
时,g(x)的最大值为
,当2x
,即x=
时g(x)的最小值为
,
综上所述,
在区间
上的最大值为
,最小值为
.
科目:高中数学 来源: 题型:
【题目】某家具厂有方木料90
,五合板600
,准备加工成书桌和书橱出售.已知生产第张书桌需要方木料O.l
,五合板2
,生产每个书橱而要方木料0.2
,五合板1
,出售一张方桌可获利润80元,出售一个书橱可获利润120元.
(1)如果只安排生产书桌,可获利润多少?
(2)怎样安排生产可使所得利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】顺次连接椭圆
的四个顶点恰好构成了一个边长为
且面积为
的菱形。
(1)求椭圆
的方程;
(2)
,
是椭圆
上的两个不同点,若直线
,
的斜率之积为
(以
为坐标原点),线段
上有一点
满足
,连接并延长交椭圆
于点
,求椭圆
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
的方程为
.
(1)当
时,试确定曲线
的形状及其焦点坐标;
(2)若直线
交曲线
于点
、
,线段
中点的横坐标为
,试问此时曲线
上是否存在不同的两点
、
关于直线
对称?
(3)当
为大于1的常数时,设
是曲线
上的一点,过点
作一条斜率为
的直线
,又设
为原点到直线
的距离,
分别为点
与曲线
两焦点的距离,求证
是一个定值,并求出该定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an} 满足a1=a,
=can+1﹣c(n∈N*),其中a、c为实数,且c≠0.
(1)求数列{an} 的通项公式;
(2)设a=
,c=
,bn=n(1﹣an)(n∈N*),求数列 {bn}的前n项和Sn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】几位大学生响应国家的创业号召,开发了
三款软件,为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动,这三款软件的激活码分别为下面数学问题的三个答案:已知数列
,其中第一项是
,接下来的两项是
,再接下来的三项是
,以此类推,试根据下列条件求出三款软件的激活码
(1)A款应用软件的激活码是该数列中第四个三位数的项数的平方
(2)B款应用软件的激活码是该数列中第一个四位数及其前所有项的和
(3)C款应用软件的激活码是满足如下条件的最小整数
:①
;②该数列的前
项和为2的整数幂
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com