精英家教网 > 高中数学 > 题目详情
已知函数f(x)=sin2(x)-2(a-1)sinx•cosx+5cos2(x)+2-a,试推断是否存在常数a,使f(x)的最大值为6?若存在,求出a值:若不存在,说明理由.
考点:三角函数的最值
专题:三角函数的求值
分析:利用三角恒等变换化简函数的解析式为f(x)=5-a+(1-a)sin2x+2cos2x,再根据asinx+bcosx的最大值为
a2+b2
、以及题中条件求得a的值.
解答: 解:函数f(x)=sin2(x)-2(a-1)sinx•cosx+5cos2(x)+2-a
=1-(a-1)sin2x+4•
1+cos2x
2
+2-a=5-a+(1-a)sin2x+2cos2x.
故函数f(x)的最大值为 5-a+
(1-a)2+22
=6,即
(1-a)2+22
=1+a,
求得a=1,故存在常数a=1,使f(x)的最大值为6.
点评:本题主要考查三角恒等变换,利用了asinx+bcosx的最大值为
a2+b2
,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三棱锥A-BCD的每条棱长都等于1,M为BC中点,N为AD中点.
(1)求AM与BD成的角的余弦;
(2)求AM与CN成的角的余弦.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线y=5
2x+1
,求曲线上与直线5x-2y+1=0平行的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)满足f(x+1)-f(x)=2x(x∈R),且f(0)=1.
(1)求f(x)的解析式;
(2)若函数g(x)=f(x)-2tx在区间[-1,5]上是单调函数,求实数t的取值范围;
(3)若关于x的方程f(x)=x+m有区间(-1,2)上有唯一实数根,求实数m的取值范围(注:相等的实数根算一个).

查看答案和解析>>

科目:高中数学 来源: 题型:

证明:
1
12
+
1
22
+…+
1
n2
7
4
,n∈Z*

查看答案和解析>>

科目:高中数学 来源: 题型:

某校研究性学习小组从汽车市场上随机抽取20辆纯电动汽车调查其续驶里程(单次充电后能行驶的最大里程),被调查汽车的续驶里程全部介于50公里和300公里之间,将统计结果分成5组:[50,100),[100,150),[150,200),[200,250),[250,300),绘制成如图所示的频率分布直方图.
(1)求续驶里程在[200,300]的车辆数;
(2)若从续驶里程在[200,300]的车辆中随机抽取2辆车,求其中恰有一辆车的续驶里程在[200,250)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

非零向量
a
b
满足
a
b
-2
a
2
b
2=0,|
a
|+|
b
|=1,则
a
b
的夹角的最小值是(  )
A、
π
6
B、
π
3
C、-
π
3
D、-
π
6

查看答案和解析>>

科目:高中数学 来源: 题型:

“因为
a
=(1,0),
b
=(0,-1),所以
a
b
=(1,0)•(0,-1)=1×0+0×(-1)=0,所以
a
b
”中,大前提是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,点P在正方体ABCD-A1B1C1D1 的对角线BD1上,且cos∠PDA=
6
4
,则直线DP与CC1所成角的大小(  )
A、75°B、60°
C、45°D、30°

查看答案和解析>>

同步练习册答案