精英家教网 > 高中数学 > 题目详情
证明:
1
12
+
1
22
+…+
1
n2
7
4
,n∈Z*
考点:数学归纳法
专题:证明题,点列、递归数列与数学归纳法
分析:利用
1
n2
1
n2-1
=
1
2
1
n-1
-
1
n+1
),即可证明结论.
解答: 证明:∵
1
n2
1
n2-1
=
1
2
1
n-1
-
1
n+1

1
12
+
1
22
+…+
1
n2
<1+
1
2
(1-
1
3
+
1
2
-
1
4
+
1
3
-
1
5
+…+
1
n-1
-
1
n+1
)=1+
1
2
(1+
1
2
-
1
n
-
1
n+1
)<
7
4
点评:本题考查不等式的证明,考查放缩法的运用,利用
1
n2
1
n2-1
=
1
2
1
n-1
-
1
n+1
)是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(2cosφ,2sinφ),φ∈(90°,180°),
b
=(1,1),则向量
a
b
的夹角为(  )
A、φB、φ-45°
C、135°-φD、45°-φ

查看答案和解析>>

科目:高中数学 来源: 题型:

数列前n项和为n3,且前n个偶数项的和为n2(4n+3),则前n个奇数项的和为(  )
A、-3n2(n+1)
B、n2(4n-3)
C、-3n2
D、
1
2
n3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+bx+c和g(x)=2x+b,若对任意的x∈R,恒有f(x)≥g(x)
(1)证明:c≥1且c≥b
(2)证明:当x≥0时,(x+c)2≥f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:

从5名男生,3名女生中选4名代表,至少有1名女生的选法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin2(x)-2(a-1)sinx•cosx+5cos2(x)+2-a,试推断是否存在常数a,使f(x)的最大值为6?若存在,求出a值:若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2ax+3,g(x)=mx+5-2m.
(Ⅰ)若函数F(x)=f(3x),x∈[-1,1],F(x)的最小值为h(a),求h(a)的解析式;
(Ⅱ)若x∈[1,4],当a=2时f(x)的值域为A,g(x)的值域为B,A∪B=B,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

锐角三角形ABC的内角分别是A,B,C,并且A>B,是否有sinA+sinB>cosA+cosB.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P为等腰△ABC内一点,AB=BC,∠BPC=108°.D为AC的中点,BD与PC交于点E,如果P为△ABE的内心,则∠PAC的度数是
 

查看答案和解析>>

同步练习册答案