精英家教网 > 高中数学 > 题目详情
非零向量
a
b
满足
a
b
-2
a
2
b
2=0,|
a
|+|
b
|=1,则
a
b
的夹角的最小值是(  )
A、
π
6
B、
π
3
C、-
π
3
D、-
π
6
考点:数量积表示两个向量的夹角
专题:平面向量及应用
分析:
a
b
的夹角为θ,由条件可得cosθ=2|
a
|•|
b
|=2|
a
|(1-|
a
|),利用二次函数的性质求得cosθ的最大值,可得θ的最小值.
解答: 解:设
a
b
的夹角为θ,∵
a
b
-2
a
2
b
2=0,∴|
a
|•|
b
|cosθ=2|
a
|
2
|
b
|
2

∴cosθ=2|
a
|•|
b
|.
∵|
a
|+|
b
|=1,∴cosθ=2|
a
|(1-|
a
|),故当|
a
|=
1
2
时,cosθ取得最大值为
1
2

此时,θ=
π
3

故选:B.
点评:本题考查向量的数量积,考查基本不等式的运用,正确运用向量的数量积是关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=sin(2ωx-
π
6
)-2cos2ωx+1(ω>0)直线y=
3
与函数f(x)图象相邻两交点的距离为π.
(1)求ω的值;
(2)若g(x)=af(x)+b在[0,
π
2
]上的最大值为
3
+
5
2
,最小值为1,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+bx+c和g(x)=2x+b,若对任意的x∈R,恒有f(x)≥g(x)
(1)证明:c≥1且c≥b
(2)证明:当x≥0时,(x+c)2≥f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin2(x)-2(a-1)sinx•cosx+5cos2(x)+2-a,试推断是否存在常数a,使f(x)的最大值为6?若存在,求出a值:若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2ax+3,g(x)=mx+5-2m.
(Ⅰ)若函数F(x)=f(3x),x∈[-1,1],F(x)的最小值为h(a),求h(a)的解析式;
(Ⅱ)若x∈[1,4],当a=2时f(x)的值域为A,g(x)的值域为B,A∪B=B,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)是幂函数,h(x)=ax-1,f(x)=h(x)-g(x),且函数f(x)的图象过点(4,-
7
2
)和(1,1)两点.
(1)求f(x)的解析式;
(2)求函数f(x)的单调区间,判断函数在区间[-2,3]上是否存在最大值或最小值;若存在,求出对应的最值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

锐角三角形ABC的内角分别是A,B,C,并且A>B,是否有sinA+sinB>cosA+cosB.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:x+my+1=0与l2:mx+y+1=0
(1)当l1⊥l2时,求m;
(2)当l1∥l2时,求m.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(x+θ)+
3
cos(x+θ),θ∈[-
π
2
π
2
]
,且函数f(x)是偶函数,则θ的值为
 

查看答案和解析>>

同步练习册答案