14£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ô²C1ºÍC2µÄ²ÎÊý·½³Ì·Ö±ðÊÇ$\left\{\begin{array}{l}x=2+2cosϕ\\ y=2sinϕ\end{array}\right.$£¨ϕΪ²ÎÊý£©ºÍ$\left\{\begin{array}{l}x=cos¦Â\\ y=1+sin¦Â\end{array}\right.$£¨¦ÂΪ²ÎÊý£©£¬ÒÔOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®
£¨1£©ÇóÔ²C1ºÍC2µÄ¼«×ø±ê·½³Ì£»
£¨2£©ÉäÏßOM£º¦È=¦ÁÓëÔ²C1µÄ½»µã·Ö±ðΪO¡¢P£¬ÓëÔ²C2µÄ½»µã·Ö±ðΪO¡¢Q£¬Çó|OP|•|OQ|µÄ×î´óÖµ£®

·ÖÎö £¨1£©ÏÈ·Ö±ðÇó³öÆÕͨ·½³Ì£¬ÔÙд³ö¼«×ø±ê·½³Ì£»
£¨2£©ÀûÓü«¾¶µÄÒâÒ壬¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£º£¨1£©Ô²C1ºÍC2µÄ²ÎÊý·½³Ì·Ö±ðÊÇ$\left\{\begin{array}{l}x=2+2cosϕ\\ y=2sinϕ\end{array}\right.$£¨ϕΪ²ÎÊý£©ºÍ$\left\{\begin{array}{l}x=cos¦Â\\ y=1+sin¦Â\end{array}\right.$£¨¦ÂΪ²ÎÊý£©£¬
ÆÕͨ·½³Ì·Ö±ðΪ£¨x-2£©2+y2=4£¬x2+£¨y-1£©2=1£¬¼«×ø±ê·½³Ì·Ö±ðΪ¦Ñ=4cos¦È£¬¦Ñ=2sin¦È£»
£¨2£©ÉèP£¬Q¶ÔÓ¦µÄ¼«¾¶·Ö±ðΪ¦Ñ1£¬¦Ñ2£¬Ôò|OP|•|OQ|=¦Ñ1¦Ñ2=4sin2¦Á£¬
¡àsin2¦Á=1£¬|OP|•|OQ|µÄ×î´óֵΪ4£®

µãÆÀ ±¾Ì⿼²éÈýÖÖ·½³ÌµÄת»¯£¬¿¼²é¼«¾¶µÄÒâÒåµÄÔËÓã¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖª$\overrightarrow{a}$£¬$\overrightarrow{b}$ÊÇÁ½¸öÏòÁ¿£¬|$\overrightarrow{a}$|=1£¬|$\overrightarrow{b}$|=2£¬ÇÒ£¨$\overrightarrow{a}$+$\overrightarrow{b}$£©¡Í$\overrightarrow{a}$£¬ÈôÔÚ¡÷ABCÖУ¬$\overrightarrow{AB}$=$\overrightarrow{a}$£¬$\overrightarrow{AC}$=$\overrightarrow{b}$£¬DΪBCÖе㣬ÔòADµÄ³¤Îª£¨¡¡¡¡£©
A£®$\frac{{\sqrt{7}}}{2}$B£®$\frac{{\sqrt{6}}}{2}$C£®$\frac{{\sqrt{5}}}{2}$D£®$\frac{{\sqrt{3}}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÒÑÖªµÈ²îÊýÁÐ{an}Âú×ã${a_3}=7£¬{a_5}+{a_7}=26£¬{b_n}=\frac{1}{{{a_n}^2-1}}£¨n¡Ê{N^*}£©$£¬ÊýÁÐ{bn}µÄǰnÏîºÍΪSn£¬ÔòS100µÄֵΪ$\frac{25}{101}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Å×ÎïÏßy=$\frac{1}{4}$x2µÄ×¼Ïß·½³ÌÊÇ£¨¡¡¡¡£©
A£®y=-1B£®y=1C£®x=-$\frac{1}{16}$D£®x=$\frac{1}{16}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=4cos¦Á}\\{y=sin¦Á}\end{array}}\right.$£¨¦ÁΪ²ÎÊý£©£¬MÊÇÇúÏßCÉϵ͝µã£¬ÈôÇúÏßT¼«×ø±ê·½³Ì2¦Ñsin¦È+¦Ñcos¦È=20£¬ÔòµãMµ½TµÄ¾àÀëµÄ×î´óÖµ£¨¡¡¡¡£©
A£®$\sqrt{13}+4\sqrt{5}$B£®$2+4\sqrt{5}$C£®$4+4\sqrt{5}$D£®$6\sqrt{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÔÚËÄÀâ×¶P-ABCEÖУ¬PA¡Íµ×ÃæABCE£¬CD¡ÍAE£¬ACƽ·Ö¡ÏBAD£¬GΪPCµÄÖе㣬PA=AD=2£¬BC=DE£¬AB=3£¬CD=2$\sqrt{3}$£¬F£¬M·Ö±ðΪBC£¬EGÉÏÒ»µã£¬ÇÒAF¡ÎCD£®
£¨1£©Çó$\frac{ME}{MG}$µÄÖµ£¬Ê¹µÃCM¡ÎÆ½ÃæAFG£»
£¨2£©¹ýµãE×÷Æ½ÃæPCDµÄ´¹Ïߣ¬´¹×ãΪH£¬ÇóËÄÀâ×¶H-ABCDµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ô²CµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=5cos¦Á}\\{y=-6+5sin¦Á}\end{array}$£¨¦ÁΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®
£¨1£©ÇóÔ²CµÄ¼«×ø±ê·½³Ì£»
£¨2£©Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦È=¦Á0£¬ÆäÖЦÁ0Âú×ãtan¦Á0=$\frac{\sqrt{5}}{2}$£¬lÓëC½»ÓÚA£¬BÁ½µã£¬Çó|AB|µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®É躯Êý$f£¨x£©=sin£¨2x+\frac{¦Ð}{6}£©$£¬ÔòÏÂÁÐÃüÌ⣺
¢Ùf£¨x£©µÄͼÏó¹ØÓÚÖ±Ïß$x=\frac{¦Ð}{3}$¶Ô³Æ£»
¢Úf£¨x£©µÄͼÏó¹ØÓÚµã$£¨{\frac{¦Ð}{6}£¬0}£©$¶Ô³Æ£»
¢Ûf£¨x£©µÄ×îСÕýÖÜÆÚΪ¦Ð£¬ÇÒÔÚÇø¼ä$[{0£¬\frac{¦Ð}{12}}]$ÉÏΪÔöº¯Êý£»
¢Ü°Ñf£¨x£©µÄͼÏóÏòÓÒÆ½ÒÆ$\frac{¦Ð}{12}$¸öµ¥Î»³¤¶È£¬µÃµ½Ò»¸öÆæº¯ÊýµÄͼÏó£®
ÆäÖÐÕýÈ·µÄÃüÌâµÄÐòºÅΪ¢Û¢Ü£®£¨°ÑÕýÈ·µÄ¶¼ÌîÉÏ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÍÖÔ²$\frac{x^2}{4}+{y^2}$=1ÉϵÄÒ»µãPÓëÁ½½¹µãF1£¬F2Ëù¹¹³ÉµÄÈý½ÇÐγÆÎª½¹µãÈý½ÇÐΣ®
£¨1£©Çó$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$µÄ×î´óÖµÓë×îСֵ£®
£¨2£©Éè¡ÏF1PF2=¦È£¬ÇóÖ¤£º${S_{¡÷{F_1}PF}}_2=tan$$\frac{¦È}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸