精英家教网 > 高中数学 > 题目详情
13.设函数$f(x)=sin(2x+\frac{π}{6})$,则下列命题:
①f(x)的图象关于直线$x=\frac{π}{3}$对称;
②f(x)的图象关于点$({\frac{π}{6},0})$对称;
③f(x)的最小正周期为π,且在区间$[{0,\frac{π}{12}}]$上为增函数;
④把f(x)的图象向右平移$\frac{π}{12}$个单位长度,得到一个奇函数的图象.
其中正确的命题的序号为③④.(把正确的都填上)

分析 ①计算f($\frac{π}{3}$)的值,判断$x=\frac{π}{3}$是否为f(x)图象的对称轴;
②计算f($\frac{π}{6}$)的值,判断f(x)的图象是否关于点$({\frac{π}{6},0})$对称;
③求出f(x)的最小正周期,判断f(x)在区间$[{0,\frac{π}{12}}]$上的单调性;
④根据平移法则,求出f(x)图象平移的解析式即可.

解答 解:对于①,x=$\frac{π}{3}$时,f($\frac{π}{3}$)=sin(2×$\frac{π}{3}$+$\frac{π}{6}$)=$\frac{1}{2}$不是最值,
∴f(x)的图象不关于直线$x=\frac{π}{3}$对称,①错误;
对于②,f($\frac{π}{6}$)=sin(2×$\frac{π}{6}$+$\frac{π}{6}$)=1≠0,
∴f(x)的图象不关于点$({\frac{π}{6},0})$对称,②错误;
对于③,T=$\frac{2π}{ω}$=$\frac{2π}{2}$=π,∴f(x)的最小正周期为π,
又x∈[0,$\frac{π}{12}$]时,2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{π}{3}$],
∴f(x)=sin(2x+$\frac{π}{6}$)在区间$[{0,\frac{π}{12}}]$上为增函数,③正确;
对于④,把f(x)的图象向右平移$\frac{π}{12}$个单位长度,
得y=sin[2(x-$\frac{π}{12}$)+$\frac{π}{6}$]=sin2x,是奇函数的图象,④正确.
综上,正确的命题序号为③④.
故答案为:③④.

点评 本题考查了正弦函数的图象与性质的应用问题,也考查了命题真假的判断问题,是综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.点P是圆(x+3)2+(y-1)2=2上的动点,点Q(2,2),O为坐标原点,则△OPQ面积的最小值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在直角坐标系xOy中,圆C1和C2的参数方程分别是$\left\{\begin{array}{l}x=2+2cosϕ\\ y=2sinϕ\end{array}\right.$(ϕ为参数)和$\left\{\begin{array}{l}x=cosβ\\ y=1+sinβ\end{array}\right.$(β为参数),以O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求圆C1和C2的极坐标方程;
(2)射线OM:θ=α与圆C1的交点分别为O、P,与圆C2的交点分别为O、Q,求|OP|•|OQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.点M的直角坐标(2$\sqrt{3}$,-2)化成极坐标为(  )
A.(4,$\frac{5π}{6}$)B.(4,$\frac{2π}{3}$)C.(4,$\frac{5π}{3}$)D.(4,$\frac{11π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知a为常数,函数f(x)=ax3-3ax2-(x-3)ex+1在(0,2)内有两个极值点,则实数a的取值范围为(  )
A.$(-∞,\frac{e}{3})$B.$(\frac{e}{3},{e^2})$C.$(\frac{e}{3},\frac{e^2}{6})$D.$(\frac{e}{3},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数$f(x)=-{log_2}({{x^2}-2ax+3})在(-∞,1)$上是增函数,则a的取值范围[1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ex-e-x(x∈R,且e为自然对数的底数).
(1)判断函数f(x)的单调性与奇偶性;
(2)是否存在实数t,使不等式f(x-t)+f(x2-t2)≥0对一切x∈R都成立?若存在,求出t;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.△ABC,角A,B,C对应边分别为a,b,c,已知条件p:$\frac{a}{cosA}$=$\frac{b}{cosB}$,条件q:a=b,则p是q成立的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既非充分也非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=2ax-asinx+cosx在(-∞,+∞)内单调递减,则实数a的取值范围是(  )
A.(-∞,$\frac{\sqrt{3}}{3}$)B.(-∞,$\frac{\sqrt{3}}{3}$]C.(-∞,-$\frac{\sqrt{3}}{3}$)D.(-∞,-$\frac{\sqrt{3}}{3}$]

查看答案和解析>>

同步练习册答案