精英家教网 > 高中数学 > 题目详情
2.△ABC,角A,B,C对应边分别为a,b,c,已知条件p:$\frac{a}{cosA}$=$\frac{b}{cosB}$,条件q:a=b,则p是q成立的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既非充分也非必要条件

分析 根据余弦定理化简得到a=b,再根据充要条件的定义即可判断.

解答 解:∵$\frac{a}{cosA}$=$\frac{b}{cosB}$,
∴$\frac{a}{\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}}$=$\frac{b}{\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}}$,
∴b2+c2-a2=a2+c2-b2
∴a=b,
故p是q成立的充要条件,
故选:A

点评 本题主要考查充分必要的定义,余弦定理的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.抛物线y=$\frac{1}{4}$x2的准线方程是(  )
A.y=-1B.y=1C.x=-$\frac{1}{16}$D.x=$\frac{1}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数$f(x)=sin(2x+\frac{π}{6})$,则下列命题:
①f(x)的图象关于直线$x=\frac{π}{3}$对称;
②f(x)的图象关于点$({\frac{π}{6},0})$对称;
③f(x)的最小正周期为π,且在区间$[{0,\frac{π}{12}}]$上为增函数;
④把f(x)的图象向右平移$\frac{π}{12}$个单位长度,得到一个奇函数的图象.
其中正确的命题的序号为③④.(把正确的都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)设0<x<$\frac{3}{2}$,求函数y=x(2-x)的最大值
(2)已知x>3,求y=x+$\frac{4}{x-3}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知命题p:?x0∈(0,+∞),$sin{x_0}=\frac{e}{2}$(其中e为自然对数的底数),则¬p为?x∈(0,+∞),sinx≠$\frac{e}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=4cos($\frac{π}{3}$-ωx)cosωx-1(ω>0)图象的相邻两条对称轴之间的距离为$\frac{π}{2}$.
(1)求函数f(x)的解析式;
(2)求函数f(x)在[0,2π]上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.椭圆$\frac{x^2}{4}+{y^2}$=1上的一点P与两焦点F1,F2所构成的三角形称为焦点三角形.
(1)求$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的最大值与最小值.
(2)设∠F1PF2=θ,求证:${S_{△{F_1}PF}}_2=tan$$\frac{θ}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}是非常值数列,且满足an+2=2an+1-an(n∈N*),其前n项和为sn,若s5=70,a2,a7,a22成等比数列.
( I)求数列{an}的通项公式;
( II)设数列$\left\{{\frac{1}{s_n}}\right\}$的前n项和为Tn,求证:$\frac{1}{6}≤{T_n}<\frac{3}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=alnx+x2-4x(a∈R).
(1)讨论函数f(x)的单调区间;
(2)若A(x1,y1),B(x2,y2)(x2>x1>0)是曲线y=f(x)上的两点,x0=$\frac{{x}_{1}+{x}_{2}}{2}$,问:是否存在a,使得直线AB的斜率等于f′(x0)?若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案