精英家教网 > 高中数学 > 题目详情
17.已知命题p:?x0∈(0,+∞),$sin{x_0}=\frac{e}{2}$(其中e为自然对数的底数),则¬p为?x∈(0,+∞),sinx≠$\frac{e}{2}$.

分析 直接利用特称命题的否定是全称命题写出结果即可.

解答 解:因为特称命题的否定是全称命题,
所以,命题p:?x0∈(0,+∞),$sin{x_0}=\frac{e}{2}$(其中e为自然对数的底数),则¬p:?x∈(0,+∞),sinx≠$\frac{e}{2}$,
故答案为:?x∈(0,+∞),sinx≠$\frac{e}{2}$.

点评 本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.某校1000名学生中,O型血有400人,A型血有250人,B型血有250人,AB型血有100人,为了研究血型与色弱的关系,要从中抽取一个容量为40的样本,按照分层抽样的方法抽取样本,则O型血、A型血、B型血、AB型血的人要分别抽的人数为(  )
A.16、10、10、4B.14、10、10、6C.13、12、12、3D.15、8、8、9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知a为常数,函数f(x)=ax3-3ax2-(x-3)ex+1在(0,2)内有两个极值点,则实数a的取值范围为(  )
A.$(-∞,\frac{e}{3})$B.$(\frac{e}{3},{e^2})$C.$(\frac{e}{3},\frac{e^2}{6})$D.$(\frac{e}{3},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ex-e-x(x∈R,且e为自然对数的底数).
(1)判断函数f(x)的单调性与奇偶性;
(2)是否存在实数t,使不等式f(x-t)+f(x2-t2)≥0对一切x∈R都成立?若存在,求出t;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,a,b,c分别是角A,B,C的对边,且满足acosA=bcosB,那么△ABC的形状一定是等腰或直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.△ABC,角A,B,C对应边分别为a,b,c,已知条件p:$\frac{a}{cosA}$=$\frac{b}{cosB}$,条件q:a=b,则p是q成立的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既非充分也非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知实数x,y满足方程(x-3)2+(y-3)2=6,求
(I)$\frac{y}{x}$的最大值与最小值;
(Ⅱ)$\sqrt{(x-2)^{2}+{y}^{2}}$的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=loga(x+1),g(x)=loga(4-2x),a>0且a≠1.
(1)求函数y=f(x)-g(x)的定义域;
(2)求使不等式f(x)>g(x)成立的实数x的取值范围;
(3)求函数y=2f(x)-g(x)-f(1)的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知cosx=$\frac{\sqrt{3}}{2}$,根据下列条件求角x:
(1)x∈[-$\frac{π}{2}$,$\frac{π}{2}$];
(2)x∈[0,2π];
(3)x∈R.

查看答案和解析>>

同步练习册答案