分析 (1)由已知中函数f(x)=ex-e-x,结合函数单调性“增+增=增”的性质及奇偶性的定义,可判断f(x)在R上是增函数且是奇函数.
(2)不等式f(x-t)+f(x2-t2)≥0对一切x∈R都成立,即t2+t≤x2+x=(x+$\frac{1}{2}$)2-$\frac{1}{4}$对一切x∈R都成立,进而可得存在$t=-\frac{1}{2}$,使不等式f(x-t)+f(x2-t2)≥0对一切x∈R都成立.
解答 (12分)
解:(1)∵f(x)=ex-e-x,
函数y=ex为增函数,函数y=-e-x为增函数
∴f(x)在R上是增函数.
(亦可用定义证明)
∵f(x)的定义域为R,且f(-x)=e-x-ex=-f(x),
∴f(x)是奇函数.
(2)存在.由(1)知f(x)在R上是增函数和奇函数,
则f(x-t)+f(x2-t2)≥0对一切都成立
?f(x2-t2)≥-f(x-t)=f(t-x)对一切x∈R都成立
?x2-t2≥t-x对一切x∈R都成立
?t2+t≤x2+x=(x+$\frac{1}{2}$)2-$\frac{1}{4}$对一切x∈R都成立
$?{t^2}+t≤{({{x^2}+x})_{min}}=-\frac{1}{4}?{t^2}+t+\frac{1}{4}={(t+\frac{1}{2})^2}≤0$,
又${(t+\frac{1}{2})}^{2}≥0$,
∴${(t+\frac{1}{2})}^{2}=0$,
∴$t=-\frac{1}{2}$,
∴存在$t=-\frac{1}{2}$,使不等式f(x-t)+f(x2-t2)≥0对一切x∈R都成立.
点评 本题考查的知识点是函数恒成立问题,函数的最值,函数的单调性,函数的奇偶性,难度中档.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com