精英家教网 > 高中数学 > 题目详情
13.点P是圆(x+3)2+(y-1)2=2上的动点,点Q(2,2),O为坐标原点,则△OPQ面积的最小值是2.

分析 求出圆上的动点P到直线OQ的距离的最小值,即可求出△OPQ面积的最小值.

解答 解:因为圆(x+3)2+(y-1)2=2,直线OQ的方程为y=x,
所以圆心(-3,1)到直线OQ的距离为$d=\frac{|-3-1|}{{\sqrt{2}}}=2\sqrt{2}$,
所以圆上的动点P到直线OQ的距离的最小值为$2\sqrt{2}-\sqrt{2}=\sqrt{2}$,
所以△OPQ面积的最小值为$\frac{1}{2}×2\sqrt{2}×\sqrt{2}=2$.
故答案为2.

点评 本题考查三角形面积的计算,考查直线与圆的位置关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.下列说法正确的是(  )
A.若x,y∈R,且$\left\{\begin{array}{l}{x+y>4}\\{xy>4}\end{array}\right.$,则$\left\{\begin{array}{l}{x>2}\\{y>2}\end{array}\right.$
B.设命题p:?x>0,x2>2x,则¬p:?x0≤0,x02≤2${\;}^{{x}_{0}}$
C.△ABC中,A>B是sinA>sinB的充分必要条件
D.命题“若a=-1,则f(x)=ax2+2x-1只有一个零点”的逆命题为真

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\overrightarrow{a}$,$\overrightarrow{b}$是两个向量,|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,且($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{a}$,若在△ABC中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,D为BC中点,则AD的长为(  )
A.$\frac{{\sqrt{7}}}{2}$B.$\frac{{\sqrt{6}}}{2}$C.$\frac{{\sqrt{5}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知点P是函数y=x-2lnx图象上一点,点Q是直线x+y+1=0上的动点,则PQ的最小值为$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在四边形ABCD中,∠A=90°,AB=AD=2,CB=CD=3,将△ABD沿BD折起,得到三棱锥A'-BDC,O为BD的中点,M为OC的中点,点N在线段A'B上,满足$A'N=\frac{1}{4}A'B$.

(Ⅰ)证明:MN∥平面A'CD;
(Ⅱ)若A'C=3,求点B到平面A'CD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,a=5,B=45°,C=105°,解三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知等差数列{an}满足${a_3}=7,{a_5}+{a_7}=26,{b_n}=\frac{1}{{{a_n}^2-1}}(n∈{N^*})$,数列{bn}的前n项和为Sn,则S100的值为$\frac{25}{101}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.抛物线y=$\frac{1}{4}$x2的准线方程是(  )
A.y=-1B.y=1C.x=-$\frac{1}{16}$D.x=$\frac{1}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数$f(x)=sin(2x+\frac{π}{6})$,则下列命题:
①f(x)的图象关于直线$x=\frac{π}{3}$对称;
②f(x)的图象关于点$({\frac{π}{6},0})$对称;
③f(x)的最小正周期为π,且在区间$[{0,\frac{π}{12}}]$上为增函数;
④把f(x)的图象向右平移$\frac{π}{12}$个单位长度,得到一个奇函数的图象.
其中正确的命题的序号为③④.(把正确的都填上)

查看答案和解析>>

同步练习册答案