精英家教网 > 高中数学 > 题目详情
20.设集合A={x|x2+3x<0},B={x|x<-1},则A∩B=(  )
A.(-3,-1)B.(-3,0)C.(-∞,-1)D.(0,+∞)

分析 求出A中不等式的解集确定出A,找出A与B的交集即可.

解答 解:由A中不等式变形得:x(x+3)<0,
解得:-3<x<0,即A=(-3,0),
∵B=(-∞,-1),
则A∩B=(-3,-1),
故选:A.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知x>0,y>0,若4x2+y2+xy=1,求2x+y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=ax3+bx+c是定义在R上的奇函数,且函数f(x)的图象在x=1处的切线方程为y=3x+2
(1)求函数f(x)的解析式
(2)若对任意x∈(0,3]都有f(x)≤mx+16成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在四棱锥S-ABCD中,底面ABCD是菱形,SA=SD,∠BAD=60°,AB=2,SE=$\sqrt{3}$,SC=$\sqrt{10}$,E是AD中点,SF=2FC.
(1)求证:AD⊥平面SBE;
(2)求三棱锥F-BEC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知F1,F2分别为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点,P为椭圆上一点,且PF2垂直于x轴.若|F1F2|=2|PF2|,则该椭圆的离心率为$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知△ABC的内角A,B,C所对的边分别为a,b,c,若C=$\frac{π}{4}$,AB边上的高为$\frac{c}{2}$,则$\frac{a^2+b^2}{ab}$=2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若实数x,y>0且xy=1,则x+2y的最小值是$2\sqrt{2}$,$\frac{{{x^2}+4{y^2}}}{x+2y}$的最小值是$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数y=lnx的反函数为y=g(x),函数f(x)=$\frac{{x}^{2}}{e}$•g(x)-$\frac{1}{3}$x3-x2(x∈R)
(Ⅰ)求函数y=f(x)的单调区间
(Ⅱ)求y=f(x)在[-1,2ln3]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设变量x,y满足约束条件$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$,则z=x+2y的最小值为(  )
A.-3B.-1C.13D.-5

查看答案和解析>>

同步练习册答案