精英家教网 > 高中数学 > 题目详情

【题目】在抛物线y=x2与直线y=2围成的封闭图形内任取一点A,O为坐标原点,则直线OA被该封闭图形解得的线段长小于 的概率是(
A.
B.
C.
D.

【答案】C
【解析】解:抛物线y=x2与直线y=2所围成的面积为 S阴影= (2﹣x2)dx=(2x﹣ x3)| =
以O为原点, 为半径的圆与抛物线y=x2分别交于B,C两点,
则OB=OC= ,圆O的方程为x2+y2=2,
故A点只有在红色区域内时,

直线OA被直线OA被该封闭图形解得的线段长小于
,解得
∴B(﹣1,1),C(1,1),
∴直线OB,OC的解析式分别为y=﹣x或y=x,
∴红色区域面积S= + (x﹣x2)dx=(﹣ )| +( )| = +
∴直线OA被该封闭图形解得的线段长小于 的概率P= = =
故选:C
【考点精析】掌握几何概型是解答本题的根本,需要知道几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知在三棱锥P﹣ABC中,PA⊥面ABC,ACBC,且PA=AC=BC=1,点EPC的中点,作EFPBPB于点F.

(Ⅰ)求证:PB⊥平面AEF;

(Ⅱ)求二面角A﹣PB﹣C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 是函数f(x)=msinωx﹣cosωx(m>0)的一条对称轴,且f(x)的最小正周期为π
(Ⅰ)求m值和f(x)的单调递增区间;
(Ⅱ)设角A,B,C为△ABC的三个内角,对应边分别为a,b,c,若f(B)=2, ,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极点为直角坐标系的原点,极轴为x轴正半轴且单位长度相同的极坐标系中曲线C1:ρ=1, (t为参数).
(Ⅰ)求曲线C1上的点到曲线C2距离的最小值;
(Ⅱ)若把C1上各点的横坐标都扩大为原来的2倍,纵坐标扩大为原来的 倍,得到曲线 .设P(﹣1,1),曲线C2 交于A,B两点,求|PA|+|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x,y∈R.
(Ⅰ)若x,y满足 ,求证:
(Ⅱ)求证:x4+16y4≥2x3y+8xy3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:

(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;

(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;

(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据空气质量指数API(为整数)的不同,可将空气质量分级如下表:

现对某城市30天的空气质量进行监测,获得30API数据(每个数据均不同),统计绘得频率分布直方图如图.

(1)请由频率分布直方图来估计这30API 的平均值;

(2)若从获得的空气质量优空气质量中重度污染的数据中随机选取个数据进行复查,求空气质量优空气质量中重度污染数据恰均被选中的概率;

(3)假如企业每天由空气污染造成的经济损失S(单位:元)与空气质量指数API (记为)的关系式为

若将频率视为概率,在本年内随机抽取一天,试估计这天的经济损失S不超过600元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形为矩形,且平面, ,的中点.

(1)求证:

(2)求三棱锥的体积;

(3)探究在上是否存在点,使得平面,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在直三棱柱中, ,点分别是的中点.

(1)求证: ∥平面

(2)若,求证: .

查看答案和解析>>

同步练习册答案