精英家教网 > 高中数学 > 题目详情

【题目】下列四个命题:

①样本方差反映的是所有样本数据与样本平均值的偏离程度;

②基本事件空间是Ω={1,2,3,4,5,6},若事件A={1,3},B={3,5,6},A,B为互斥事件,但不是对立事件;

③某校高三(1)班和高三(2)班的人数分别是m,n,若一模考试数学平均分分别是a,b,则这两个班的数学平均分为

④如果平面外的一条直线上有两个点到这个平面的距离相等,那么这条直线与这个平面的位置关系为平行或相交。

其中真命题的序号是__________

【答案】①④.

【解析】分析:根据方差定义、互斥与对立概念、平均数计算方法以及线面位置关系确定命题真假.

详解:因为样本方差反映的是所有样本数据与样本平均值的偏离程度;所以①对

因为基本事件空间是Ω={1,2,3,4,5,6},若事件A={1,3},B={3,5,6},A,B不为互斥事件,所以②错;

因为某校高三(1)班和高三(2)班的人数分别是m,n,若一模考试数学平均分分别是a,b,则这两个班的数学平均分为,所以③错;

因为如果平面外的一条直线上有两个点到这个平面的距离相等,那么这条直线与这个平面的位置关系为平行(同侧时)或相交(异侧时),所以④对.

因此真命题的序号是①④.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中提到了一种名为“刍甍”的五面体(如图)面 为矩形,棱 .若此几何体中, 都是边长为 的等边三角形,则此几何体的表面积为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为 ,且过点 .
(1)求椭圆 的方程;
(2)设不过原点 的直线 与椭圆 交于 两点,直线 的斜率分别为 ,满足 ,试问:当 变化时, 是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直三棱柱 中, 分别是 的中点, ,则BM与AN所成角的余弦值为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,角A,B,C的对边分别为abc已知cosB=a=5c

(1)求sinC的值;

(2)若ABC的面积S=sinAsinC,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下的资料:
该兴趣小组确定的研究方案是:现从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选用的2组数据进行检验.
参考公式:


(1)求选取的2组数据恰好是相邻两个月的概率;
(2)若选取的是1月与6月的两组数据,请根据2至5月的数据,求出 关于 的线性回归方程
(3)若有线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问(2)中所得线性回归方程是否是理想?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.

(1)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;

(2)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.

(3)利用分层抽样的方法在[0,0.5) [3.5,4) [4,4.5)三组中选取5位居民,再从这5位居民中任意取三人,求这三人恰有两人来自同一组的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是边长为的正方形, 平面 ,且

I)求证: 平面

II)求与平面所成角的正弦值.

III为直线上一点,且平面平面,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的首项为,前项和为之间满足

(Ⅰ)求证:数列是等差数列;

(Ⅱ)求数列的通项公式;

设存在正整数,使对一切都成立,求的最大值.

查看答案和解析>>

同步练习册答案