【题目】已知椭圆
的离心率为
,且过点
.
(1)求椭圆
的方程;
(2)设不过原点
的直线
与椭圆
交于
两点,直线
的斜率分别为
,满足
,试问:当
变化时,
是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由.
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,且过点 ![]()
(Ⅰ)求椭圆
的方程;
(Ⅱ)设直线
与圆
相切于点
,且
与椭圆
只有一个公共点
.
①求证:
;
②当
为何值时,
取得最大值?并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂生产不同规格的一种产品,根据检测标准,其合格产品的质量
与尺寸
之间满足关系式
为大于
的常数),现随机抽取6件合格产品,测得数据如下:![]()
对数据作了处理,相关统计量的值如下表:![]()
(1)根据所给数据,求
关于
的回归方程(提示:由已知,
是
的线性关系);
(2)按照某项指标测定,当产品质量与尺寸的比在区间
内时为优等品,现从抽取的6件合格产品再任选3件,求恰好取得两件优等品的概率;
(附:对于一组数据
,其回归直线
的斜率和截距的最小二乘法估计值分别为
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《算法统综》是明朝程大位所著数学名著,其中有这样一段表述:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一”,其意大致为:有一七层宝塔,每层悬挂的红灯数为上一层的两倍,共有381盏灯,则塔从上至下的第三层有( )盏灯.
A.14
B.12
C.10
D.8
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,江的两岸可近似地看出两条平行的直线,江岸的一侧有
,
两个蔬菜基地,江岸的另一侧点
处有一个超市.已知
、
、
中任意两点间的距离为
千米,超市欲在
之间建一个运输中转站
,
,
两处的蔬菜运抵
处后,再统一经过货轮运抵
处,由于
,
两处蔬菜的差异,这两处的运输费用也不同.如果从
处出发的运输费为每千米
元.从
处出发的运输费为每千米
元,货轮的运输费为每千米
元.
![]()
(1)设
,试将运输总费用
(单位:元)表示为
的函数
,并写出自变量的取值范围;
(2)问中转站
建在何处时,运输总费用
最小?并求出最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个命题:
①样本方差反映的是所有样本数据与样本平均值的偏离程度;
②基本事件空间是Ω={1,2,3,4,5,6},若事件A={1,3},B={3,5,6},A,B为互斥事件,但不是对立事件;
③某校高三(1)班和高三(2)班的人数分别是m,n,若一模考试数学平均分分别是a,b,则这两个班的数学平均分为
;
④如果平面外的一条直线上有两个点到这个平面的距离相等,那么这条直线与这个平面的位置关系为平行或相交。
其中真命题的序号是__________。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com