2£®ÒÑÖªÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬¹ýµãP£¨-1£¬-2£©µÄÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=-1+tcos{{45}¡ã}}\\{y=-2+tsin{{45}¡ã}}\end{array}}\right.$£¨tΪ²ÎÊý£©£¬ÒÔÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ•sin¦È•tan¦È=4m£¨m£¾0£©£¬Ö±ÏßlÓëÇúÏßCÏཻÓÚ²»Í¬µÄÁ½µãM£¬N£®
£¨1£©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌºÍÖ±ÏßlµÄÆÕͨ·½³Ì£»
£¨2£©Èô|PM|=|MN|£¬ÇóʵÊýmµÄÖµ£®

·ÖÎö £¨1£©»¯ÇÐΪÏÒ£¬Á½±ßͬ³Ë¦Ñ£¬½áºÏ¹«Ê½x=¦Ñcos¦È£¬y=¦Ñsin¦È¿ÉµÃÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»Ö±½Ç°ÑÖ±ÏßlµÄ²ÎÊý·½³ÌÏûÈ¥²ÎÊýt¿ÉµÃÆäÆÕͨ·½³Ì£»
£¨2£©ÁªÁ¢Ö±Ïß·½³ÌÓëÅ×ÎïÏß·½³Ì£¬ÇóµÃM¡¢NµÄºá×ø±ê£¬°Ñ|PM|=|MN|ת»¯Îªºá×ø±êµÄ¹ØÏµÇómÖµ£®

½â´ð ½â£º£¨1£©Óɦѕsin¦È•tan¦È=4m£¬µÃ¦Ñsin2¦È=4mcos¦È£¬¼´¦Ñ2sin2¦È=4m¦Ñcos¦È£¬
¡ày2=4mx£¨m£¾0£©£¬
¹ÊÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪy2=4mx£¨m£¾0£©£¬
ÓÉ$\left\{{\begin{array}{l}{x=-1+tcos{{45}¡ã}}\\{y=-2+tsin{{45}¡ã}}\end{array}}\right.$£¬µÃ$\left\{\begin{array}{l}{x=-1+\frac{\sqrt{2}}{2}t}\\{y=-2+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¬¢Ù
ÏûÈ¥²ÎÊýtµÃ£ºx-y-1=0£¬
¹ÊÖ±ÏßlµÄÆÕͨ·½³ÌΪx-y-1=0£»
£¨2£©Èçͼ£¬ÁªÁ¢$\left\{\begin{array}{l}{y=x+1}\\{{y}^{2}=4mx}\end{array}\right.$£¬µÃx2+£¨2-4m£©x+1=0£®
½âµÃ£º${x}_{1}=2m-1-2\sqrt{{m}^{2}-m}$£¬${x}_{2}=2m-1+2\sqrt{{m}^{2}-m}$£®
ÓÉÌâÒâ¿ÉµÃ£º$2m-1-2\sqrt{{m}^{2}-m}+1$=$4\sqrt{{m}^{2}-m}$£¬½âµÃm=$\frac{9}{8}$£¨m£¾0£©£®

µãÆÀ ±¾Ì⿼²é²ÎÊý·½³Ì»¯ÆÕͨ·½³Ì£¬¿¼²éÁ˼òµ¥ÇúÏߵļ«×ø±ê·½³Ì£¬ÌåÏÖÁËÊýÐνáºÏµÄ½âÌâ˼Ïë·½·¨£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªº¯Êýf£¨x£©=|x-1|-2|x+1|µÄ×î´óֵΪk£®
£¨1£©ÇókµÄÖµ£»
£¨2£©Èôa£¬b£¬c¡ÊR£¬$\frac{{{a^2}+{c^2}}}{2}+{b^2}=k$£¬Çób£¨a+c£©µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÔÚ¡÷ABCÖУ¬¡ÏBAC=120¡ã£¬AC=2AB=4£¬µãDÔÚBCÉÏ£¬ÇÒAD=BD£¬ÔòAD=$\frac{\sqrt{7}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Ä³¿Õ¼ä¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¨Í¼ÖÐСÕý·½Ðεı߳¤Îª1£©£¬ÔòÕâ¸ö¼¸ºÎÌåµÄÌå»ýÊÇ£¨¡¡¡¡£©
A£®16B£®32C£®$\frac{64}{3}$D£®$\frac{32}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑÖª¶¨ÒåÔÚRÉÏżº¯Êýf£¨x£©Âú×ãf£¨x+2£©•f£¨x£©=4£¬ÇÒf£¨x£©£¾0£¬Ôòf£¨2017£©=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®¶¨ÒåÓòΪRµÄº¯Êýf£¨x£©Âú×ãf£¨x+3£©=2f£¨x£©£¬µ±x¡Ê[-1£¬2£©Ê±£¬f£¨x£©=$\left\{{\begin{array}{l}{{x^2}+x£¬x¡Ê[-1£¬0£©}\\{-{{£¨\frac{1}{2}£©}^{|x-1|}}£¬x¡Ê[0£¬2£©}\end{array}}$£®
Èô´æÔÚx¡Ê[-4£¬-1£©£¬Ê¹µÃ²»µÈʽt2-3t¡Ý4f£¨x£©³ÉÁ¢£¬ÔòʵÊýtµÄȡֵ·¶Î§ÊÇ£¨-¡Þ£¬1]¡È[2£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®Ö´ÐÐÈçͼËùʾµÄ³ÌÐò¿òͼ£¬Êä³öµÄËùÓÐÖµÖ®ºÍÊÇ37£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Éèm¡¢nÊÇÁ½Ìõ²»Í¬µÄÖ±Ïߣ¬¦Á¡¢¦ÂΪÁ½¸ö²»Í¬µÄÆ½Ãæ£¬ÔòÏÂÁÐÎªÕæÃüÌâµÄÊÇ£¨¡¡¡¡£©
A£®Èôm¡Î¦Á£¬n¡Í¦ÂÇÒ¦Á¡Í¦Â£¬Ôòm¡ÎnB£®Èôm¡Í¦Á£¬n¡Í¦ÂÇÒ¦Á¡Í¦Â£¬Ôòm¡Ín
C£®Èô¦Á¡Í¦Â£¬¦Á¡É¦Â=m£¬n¡Ím£¬Ôòn¡Í¦ÂD£®Èô¦Á¡É¦Â=m£¬n?¦Á£¬m¡Ín£¬Ôò¦Á¡Í¦Â

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®${log_3}9\sqrt{3}$=£¨¡¡¡¡£©
A£®$\frac{3}{2}$B£®$\frac{5}{2}$C£®$\frac{7}{2}$D£®$\frac{7}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸