分析 (1)根据函数的奇偶性求出a的值,检验即可;
(2)根据函数单调性的定义证明即可;
(3)根据函数的单调性以及函数的奇偶性得到m≥$\frac{1}{{2}^{t-1}}$-1,t∈[1,2],从而求出m的范围即可.
解答 解:(1)由f(0)=0得:a=1,
当a=1时,f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$,
于是f(-x)=$\frac{{2}^{-x}-1}{{2}^{-x}+1}$=$\frac{1{-2}^{x}}{1{+2}^{x}}$=-f(x),
故f(x)是奇函数;
证明:(2)对任意x1,x2∈R且x1<x2,
f(x1)-f(x2)=-$\frac{2}{{2}^{{x}_{1}}+1}$+$\frac{2}{{2}^{{x}_{2}}+1}$=$\frac{2{•2}^{{x}_{1}}(1{-2}^{{x}_{2}{-x}_{1}})}{{(2}^{{x}_{1}}+1){(2}^{{x}_{2}}+1)}$,
∵x1<x2,
∴${2}^{{x}_{1}}$>0,1-${2}^{{x}_{2}{-x}_{1}}$<0,
∴f(x1)<f(x2),
由定义知:f(x)是R上的增函数;
解:(3)∵f(m•2t-2)+f(2t)≥0,
∴f(m•2t-2)≥-f(2t)=f(-2t),
由(2),f(x)是增函数,m•2t-2≥-2t,
即m≥$\frac{1}{{2}^{t-1}}$-1,t∈[1,2],
∴m≥0,所以实数m的取值范围是[0,+∞).
点评 本题考查了函数的单调性、奇偶性问题,考查转化思想,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com