精英家教网 > 高中数学 > 题目详情
20.对于函数f(x)的定义域中任意的x1、x2(x1≠x2),有如下结论:①f(x1+x2)=f(x1)•f(x2);②f(x1•x2)=f(x1)+f(x2);③$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$;当f(x)=2x时,上述结论中正确的有(  )个.
A.3B.2C.1D.0

分析 利用函数的性质验证命题的真假即可.

解答 解:当f(x)=2x时,
①f(x1+x2)=${2}^{{x}_{1}+{x}_{2}}$=${2}^{{x}_{1}}$•${2}^{{x}_{2}}$=f(x1)•f(x2);①正确;
由①可知②f(x1•x2)=f(x1)+f(x2);不正确;
③$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$,说明函数是增函数,而f(x)=2x是增函数,所以③正确;
所以正确的结论有2个,
故选:B.

点评 本题考查函数的基本性质的应用,考查命题的真假的判断,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=bx-$\frac{b}{x}$+2alnx.(x∈R).
(1)若a=1时,函数f(x)在其定义域上不是单调函数,求实数b的取值范围;
(2)若b=1时,且当x1,x2∈(0,+∞)时,不等式[${\frac{{f({x_1})}}{x_2}$-$\frac{{f({x_2})}}{x_1}}$](x1-x2)>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设定义在R上的奇函数函数f(x)=k•2x+1+(k-3)•2-x
(1)求k的值.
(2)用定义证明f(x)在定义域内的单调性.
(3)若x∈[1,3]时,不等式f(x2-x)+f(tx+4)>0恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=aln(x+1)-x(x+1)(a∈R).
(1)讨论函数f(x)的单调性;
(2)是否存在实数a,使得存在实数m∈R*,对任意x∈(0,m)都有-x2<f(x)<0?若存在,求实数a的取值范围,若不存在,说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x,x≤2}\\{lo{g}_{2}(x-1),x>2}\end{array}\right.$.
(1)当x∈[-1,2]时,求函数f(x)的值域;
(2)解不等式f(x+1)>3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知偶函数f(x)满足$f(x+1)=-\frac{1}{f(x)}$,且当x∈[0,1]时,f(x)=x,若区间[-1,3]上,函数g(x)=f(x)-kx-k有3个零点,则实数k的取值范围是($\frac{1}{4}$,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=a-$\frac{2}{{2}^{x}+1}$,x∈R,a为常数;已知f(x)为奇函数.
(1)求a的值;
(2)求证:f(x)是R上的增函数;
(3)若对任意t∈[1,2]有f(m•2t-2)+f(2t)≥0,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设f(x)=$\frac{1}{3}$x3+ax2+bx(a,b∈R)
(1)如果g(x)=f′(x)-2x-3在x=-2时取得最小值-5,且h(x)=f(x)+3x+k只有一个零点,求k的取值范围;
(2)设a+b≤8,且a,b∈N*,若f(x)的单调减区间的长度是正整数,求a,b的值.(注:区间(m,n)的长度是n-m).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,四棱锥P-ABCD的底面是边长为2的菱形,且∠BAD=60°,PA⊥平面ABCD,且PA=1,E,F分别是BC,PA的中点.
(Ⅰ)求证:BF∥平面PED;
(Ⅱ)求二面角P-DE-A的大小;
(Ⅲ)求点C到平面PED的距离.

查看答案和解析>>

同步练习册答案