1£®Ä³µØÎªÁ˸ÄÉÆ¾ÓÃñµÄ¾Óס»·¾³£¬Õù´´¹ú¼ÒÎÀÉú³ÇÊУ¬ÔÚÊÐÃñÒâ¼ûÍøÕ¾·¢²¼Ò»Ïîµ÷²é£¬Ã¿¸öס»§ÔÚµ÷ÑÐËù¾ÓסµÄ»·¾³ÎÀÉúºó½øÐÐ×ÔÖ÷´ò·Ö£¬×î¸ß·ÖÊÇ10·Ö£®ÉϸöÔ¸ÃÍøÕ¾¹²ÓÐ100¸öס»§½øÐÐÁË´ò·Ö£¬ËùÓÐס»§´ò·ÖµÄƽ¾ù·Ö×÷Ϊ¾ÓÃñ¶Ô¸Ã³ÇÊÐÎÀÉúÏÖ×´ÂúÒâ¶ÈµÄ²Î¿¼·ÖÖµ£¬½«ÕâЩ´ò·Ö½á¹û·Ö³ÉÒÔϼ¸×飺µÚÒ»×é[0£¬2£©£¬µÚ¶þ×é[2£¬4£©£¬µÚÈý×é[4£¬6£©£¬µÚËÄ×é[6£¬8£©£¬µÚÎå×é[8£¬10]£¬µÃµ½µÄƵÂÊ·Ö²¼Ö±·½Í¼ÈçͼËùʾ£®
£¨1£©·Ö±ðÇóµÚÈý¡¢ËÄ¡¢Îå×éµÄƵÂÊ£»
£¨2£©¸ÃÍøÕ¾ÔÚ´ò·Ö½á¹û½Ï¸ßµÄµÚÈý¡¢ËÄ¡¢Îå×éÖÐÓ÷ֲã³éÑùµÄ·½·¨³éÈ¡6¸öס»§£®
¢ÙÒÑÖª¼×ס»§ºÍÒÒס»§¾ùÔÚµÚÈý×飬Çó¼×¡¢ÒÒͬʱ±»Ñ¡ÖеĸÅÂÊ£»
¢ÚÕþ¸®¾ö¶¨ÔÚÕâ6¸öס»§ÖÐËæ»ú³éÈ¡2¸ö×÷¾ßÌåÁ˽⣬ÉèµÚËÄ×éÖÐÓÐX¸öס»§±»Ñ¡ÖУ¬ÇóXµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®

·ÖÎö £¨1£©ÓÉÆµÂÊ·Ö²¼Ö±·½Í¼ÄÜÇó³öµÚÈý¡¢ËÄ¡¢Îå×éµÄƵÂÊ£®
£¨2£©¢Ù¸ÃÍøÕ¾ÔÚ´ò·Ö½á¹û½Ï¸ßµÄµÚÈý¡¢ËÄ¡¢Îå×éÖÐÓ÷ֲã³éÑùµÄ·½·¨³éÈ¡6¸öס»§£¬µÚÈý×é³é3ÈË£¬ÓɵÚÈý×é¹²ÓÐ100¡Á0.3=30¸öס»§£¬¼×ס»§ºÍÒÒס»§¾ùÔÚµÚÈý×飬ÄÜÇó³ö¼×¡¢ÒÒͬʱ±»Ñ¡ÖеĸÅÂÊ£®
¢ÚµÚËÄ×éÖÐÓÐX¸öס»§±»Ñ¡ÖУ¬ÓÉÌâÒâµÃXµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³öXµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®

½â´ð ½â£º£¨1£©ÓÉÆµÂÊ·Ö²¼Ö±·½Í¼µÃµÚÈý×éµÄƵÂÊΪ£º0.150¡Á2=0.3£¬
µÚËÄ×éµÄƵÂÊΪ£º0.1¡Á2=0.2£¬
µÚÎå×éµÄƵÂÊΪ£º0.05¡Á2=0.1£®
£¨2£©¢Ù¸ÃÍøÕ¾ÔÚ´ò·Ö½á¹û½Ï¸ßµÄµÚÈý¡¢ËÄ¡¢Îå×éÖÐÓ÷ֲã³éÑùµÄ·½·¨³éÈ¡6¸öס»§£¬
ÔòµÚÈý×é³é£º6¡Á$\frac{0.3}{0.3+0.2+0.1}$=3ÈË£¬
µÚËÄ×é³é£º6¡Á$\frac{0.2}{0.3+0.2+0.1}$=2ÈË£¬
µÚÎå×é³é£º6¡Á$\frac{0.1}{0.3+0.2+0.1}$=1ÈË£¬
¡ßµÚÈý×é¹²ÓÐ100¡Á0.3=30¸öס»§£¬¼×ס»§ºÍÒÒס»§¾ùÔÚµÚÈý×飬
¡à¼×¡¢ÒÒͬʱ±»Ñ¡ÖеĸÅÂÊp=$\frac{{C}_{2}^{2}{C}_{28}^{1}}{{C}_{30}^{3}}$=$\frac{1}{145}$£®
¢ÚµÚËÄ×éÖÐÓÐX¸öס»§±»Ñ¡ÖУ¬ÓÉÌâÒâµÃXµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬
P£¨X=0£©=$\frac{{C}_{3}^{1}+{C}_{3}^{2}}{{C}_{6}^{2}}$=$\frac{6}{15}$£¬
P£¨X=1£©=$\frac{{C}_{3}^{1}{C}_{2}^{1}+{C}_{2}^{1}}{{C}_{6}^{2}}$=$\frac{8}{15}$£¬
P£¨X=2£©=$\frac{{C}_{2}^{2}}{{C}_{6}^{2}}$=$\frac{1}{15}$£®
¡àXµÄ·Ö²¼ÁÐΪ£º

 X 0 1 2
 P $\frac{6}{15}$ $\frac{8}{15}$ $\frac{1}{15}$
EX=$0¡Á\frac{6}{15}+1¡Á\frac{8}{15}+2¡Á\frac{1}{15}$=$\frac{2}{3}$£®

µãÆÀ ±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁкÍÊýѧÆÚÍûµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÆµÂÊ·Ö²¼Ö±·½Í¼µÄÐÔÖʵĺÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®É趨ÒåÔÚRÉÏµÄÆæº¯Êýº¯Êýf£¨x£©=k•2x+1+£¨k-3£©•2-x
£¨1£©ÇókµÄÖµ£®
£¨2£©Óö¨ÒåÖ¤Ã÷f£¨x£©ÔÚ¶¨ÒåÓòÄڵĵ¥µ÷ÐÔ£®
£¨3£©Èôx¡Ê[1£¬3]ʱ£¬²»µÈʽf£¨x2-x£©+f£¨tx+4£©£¾0ºã³ÉÁ¢£¬ÇóʵÊýtµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®É躯Êýf£¨x£©=a-$\frac{2}{{2}^{x}+1}$£¬x¡ÊR£¬aΪ³£Êý£»ÒÑÖªf£¨x£©ÎªÆæº¯Êý£®
£¨1£©ÇóaµÄÖµ£»
£¨2£©ÇóÖ¤£ºf£¨x£©ÊÇRÉϵÄÔöº¯Êý£»
£¨3£©Èô¶ÔÈÎÒât¡Ê[1£¬2]ÓÐf£¨m•2t-2£©+f£¨2t£©¡Ý0£¬ÇómµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Éèf£¨x£©=$\frac{1}{3}$x3+ax2+bx£¨a£¬b¡ÊR£©
£¨1£©Èç¹ûg£¨x£©=f¡ä£¨x£©-2x-3ÔÚx=-2ʱȡµÃ×îСֵ-5£¬ÇÒh£¨x£©=f£¨x£©+3x+kÖ»ÓÐÒ»¸öÁãµã£¬ÇókµÄȡֵ·¶Î§£»
£¨2£©Éèa+b¡Ü8£¬ÇÒa£¬b¡ÊN*£¬Èôf£¨x£©µÄµ¥µ÷¼õÇø¼äµÄ³¤¶ÈÊÇÕýÕûÊý£¬Çóa£¬bµÄÖµ£®£¨×¢£ºÇø¼ä£¨m£¬n£©µÄ³¤¶ÈÊÇn-m£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÔÚ¡÷ABCÖУ¬ÒÑÖªAB=4£¬B=60¡ã£¬EΪACµÄÖе㣬AD¡ÍBC£¬´¹×ãΪD£¬Ôò$\overrightarrow{AD}$•$\overrightarrow{BE}$µÄÖµ-6£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÉèÇúÏßy=$\frac{1+cosx}{sinx}$ Ôڵ㣨$\frac{¦Ð}{2}$£¬1£©´¦µÄÇÐÏßÓëÖ±Ïßx-ay+1=0ƽÐУ¬ÔòʵÊýa=-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÔÚ¡÷ABCÖУ¬AB=4£¬AC=4$\sqrt{2}$£¬¡ÏBAC=45¡ã£¬ÒÔACµÄÖÐÏßBDΪÕÛºÛ£¬½«¡÷ABDÑØBDÕÛÆð£¬ÈçͼËùʾ£¬¹¹³É¶þÃæ½ÇA¡ä-BD-C£¬ÔÚÃæBCDÄÚ×÷CE¡ÍCD£¬ÇÒ$CE=\sqrt{2}$£®  
 £¨¢ñ£©ÇóÖ¤£ºCE¡ÎÆ½ÃæA'BD£»
£¨¢ò£©Èç¹û¶þÃæ½ÇA¡ä-BD-CµÄ´óСΪ90¡ã£¬Çó¶þÃæ½ÇB-A¡äC-EµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Èçͼ£¬ËÄÀâ×¶P-ABCDµÄµ×ÃæÊDZ߳¤Îª2µÄÁâÐΣ¬ÇÒ¡ÏBAD=60¡ã£¬PA¡ÍÆ½ÃæABCD£¬ÇÒPA=1£¬E£¬F·Ö±ðÊÇBC£¬PAµÄÖе㣮
£¨¢ñ£©ÇóÖ¤£ºBF¡ÎÆ½ÃæPED£»
£¨¢ò£©Çó¶þÃæ½ÇP-DE-AµÄ´óС£»
£¨¢ó£©ÇóµãCµ½Æ½ÃæPEDµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Ð¡Ã÷µ½Ëû¸¸Ç׵ľ¹¤·¿£¬¿´µ½Ò»¸öÀⳤΪ50cmµÄÁ¢·½Ì幤¼þ£¨Èçͼ£©£¬´ÓÁ¢·½ÌåµÄǰºó¡¢×óÓÒ¡¢ÉÏÏ¿´£¬¶¼ÓÐÇÒ½öÓÐÁ½¸öÏàͨµÄÕý·½Ðοף¬ÇëÄãËãÒ»Ë㣬Õâ¸öÁ¢·½ÌåʣϵÄÌå»ýÊǶàÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸